Keywords: Adipose derived stem cells, Diabetes, Mesenchymal stem cells, Wound healing, Chronic wounds.

ABSTRACT: Wound healing is a complex process resulting in restoration of the structural integrity and functionality of injured tissue. Any disruption or delay in this process results in a chronic wound, which is a challenge to treat even with currently available therapy. Diabetic foot ulcers are a prime example of difficult-to-treat wounds. Despite the millions of dollars spent annually on ulcer management, individuals with diabetes are still at risk for amputations and ulcer recurrence. Adipose derived stem cells (ADSCs) have been investigated as a means to aid the wound healing process. These cells function in a paracrine manner, stimulating surrounding cells and promoting angiogenesis. The studies reviewed highlight the benefit of ADSCs in chronic wounds in both animal models as well as in humans. Research on ADSC in chronic wounds is still in its infancy. Further studies are required to understand their exact mechanism of action, their potential utility in diabetic wounds, and to confirm their safety and efficacy in before this promising therapeutic can be translated to large-scale human therapy.

INTRODUCTION
Diabetes affects nearly 10.9% of the American population, which translates to 24.4 million people in 2013.1 According to the International Diabetes Foundation, $263 billion (USD) was spent on diabetes management in USA in 2013.1 Approximately 33% of this amount was spent on the management of foot ulcers2; the chronic wound most commonly associated with diabetes. Foot ulcers occur as a result of structural foot abnormalities, peripheral neuropathy and peripheral arterial disease. The combination of these processes significantly inhibits wound healing, predisposing individuals to infection, gangrene and subsequent amputations. Individuals with diabetes have a 15% life time risk of developing ulcers3 and an increased likelihood of ulcer recurrence compared to the general population4. Over $5 billion (USD) is spent world-wide annually on advanced wound care products to treat poor wound healing and minimize scarring5.

Several steps are involved in proper diabetic foot ulcer (DFU) management including controlling infection, assessing the need for revascularization, minimizing the pressure to the affected area (off-loading) and applying local therapeutic agents to revascularize the wound bed6. Once the wound has healed, the focus then shifts to preventing wound recurrence. Recently, stem cell therapies have been investigated as a means of promoting wound healing and revascularization7. Their proposed mechanism of action has shifted from the idea of terminal differentiation to one in which the cells function in a paracrine fashion, secreting growth and angiogenic factors to promote wound healing8. This, combined with their ability to differentiate into various cell types, recruit cells into the injured area and stimulate surrounding cells, all serve to augment the healing process9. Embryonic stem cells (ESCs) are pluripotent cells that have been shown to enhance wound healing in animal models of diabetic wounds10. ESCs, however, are limited in their utility due to ethical considerations, potential for malignant transformation13 and concerns regarding immunocompatibility11.

Mesenchymal stem cells (MSCs) have also demonstrated promising results in clinical trials with non-healing wounds. These cells do not have the same limiting factors as ESCs, are found in various
tissues throughout the body, are readily accessible, and easily isolated. MSCs by definition are adherent, fibroblast-like cells that are also multipotent, capable of differentiating into different cell lines, such as osteoblasts, chondrocytes, and adipocytes in vitro and can be autologously transplant and can be autologously transplanted as they are immunocompatible. Though MSCs can be harvested from different sites, they have been shown to have specific characteristics and studies have shown that they originate from a perivascular niche.

Adipose derived stem cells (ADSCs) are a subtype of MSC that are easily accessible and can be harvested in large quantities with minimal patient discomfort and morbidity. The use of ADSCs to treat diabetic wounds has been demonstrated to be safe and efficacious in numerous animal and human trials (Tables 1 and 2). In the three steps of diabetic foot ulcer healing, the use of stem cells play a role in the revascularization as well as the prevention of recurrence. Current methods of revascularization include angioplasty, thrombolysis and distal bypass procedures to improve the macrovascular supply. Effective treatment of diabetic ulcers should also include improvement of the microvascular supply. Efficient treatment with stem cells aimshopes to improve angiogenesis, neoangiogenesis and to promote tissue regeneration, thus improving the microvascular supply and preventing future ulcers. This review aims to elaborate on the current advances in research associated with ADSCs and wound management and to highlight possible directions for future research and clinical practices.

ADSC’s IN WOUND HEALING

Wound healing is a complex process categorized into three overlapping phases: inflammation, proliferation, and maturation/remodeling. Disruption of any of these phases results in delayed wound healing and subsequent chronic wound development. Factors preventing or delaying the normal progression of wound healing include underlying systemic disorders (e.g., diabetes), infections, tissue hypoxia, necrosis, excess exudate and elevated levels of pro-inflammatory cytokines. During the normal healing process, it is thought that endogenous stem cellsMSCs, which are attracted to sites of injury by tissue ischemia, cytokine and chemokine release that play an important role in angiogenesis and wound healing. Tissue hypoxia resulting from injury and healing results in the release of EPC attractant molecules such as granulocyte colony-stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PGF), erythropoietin (EPO), and stromal derived factor 1 (SDF-1). EPCs are attracted to target tissues through their expression of the CXCR4 receptor which binds to the SDF-1 ligand. Hypoxia-inducible factor-1 (HIF-1), a transcription factor from endothelial cells, in turn regulates CXCR4 expression on EPCs and SDF-1 expression on ischemic tissues, resulting in the adhesion, migration and homing of EPCs to ischemic tissues. Once the levels of the EPC attractant factors increases above the bone marrow threshold, nitric oxide synthetase is activated. This results in the synthesis of nitric oxide which in turn, regulates the activity of matrix metalloproteinases (MMP). MMP-9 in the bone marrow results in a ligand release from EPCs, which allows them to mobilize to the site injury. SDF-1, together with interleukin 8 (IL-8), CXCR2, growth-regulated oncogene-a, CXCR1, CCL5, CCR5, C-C chemokine and chemokine (C-C motif) receptors 2 and 5, activate and hone EPCs to injured sites. The activated EPCs migrate through the endothelium into sites of injury via intergrin-mediated adhesion to then contribute to angiogenesis and tissue regeneration in a paracrine fashion.

The activated progenitor cellMSCs have an anti-inflammatory effect at the site of the wound by reducing the activity of mast cells, natural killer cells T cells and B cells. The immunomodulating effect favors fibroblast activity and results in better granulation tissue deposition, allowing progression of the healing process. In the proliferative phase, MSCs have a proangiogenic function, releasing mediators such as VEGF, which promotes vessel formation in the wound bed. Cytokines and growth factors are also released by MSCs which help in the production and deposition of collagen in the extracellular matrix (ECM) and prevent wound contraction by inhibiting myofibroblast differentiation. In the remodeling phase, progenitor cellsMSC inhibit excessive fibroblasts differentiation into myofibroblasts and also help to control cell differentiation in other cells. This helps to produce a more functional ECM, which is structurally similar to uninjured tissue.
<table>
<thead>
<tr>
<th>Investigators</th>
<th>Cell Type and Source</th>
<th>Method of Delivery</th>
<th>Wound type</th>
<th>Outcome</th>
<th>Proposed Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon et al (2006)</td>
<td>Human ADSC</td>
<td>Local intramuscular injection</td>
<td>Femoral artery ligation resulting in hind limb ischemia</td>
<td>Muscle injury recovery, increased vascular density. Healing was noted even when ADSC were injected 7 days later. Improved healing with SC</td>
<td>Paracrine effect via secretion of cytokines and pro-angiogenic factors. Possible transformation of ADSCs to regenerate vessels Improved collagen metabolism and improved functionality of growth factors Proangiogenic growth factor release.</td>
</tr>
<tr>
<td>Kwon et al (2008)</td>
<td>Rat BMSC</td>
<td>Systemic administration</td>
<td>5mm Fascial wound</td>
<td>Improved healing with SC</td>
<td>Improved wound healing, greater with fibroblasts compared to ADSC Paracrine effect via growth factors and differentiation into keratinocytes and endothelial cells Increased deposition of matrix elements and increased production of growth factors</td>
</tr>
<tr>
<td>Nambu et al (2009)</td>
<td>ADSC and fibroblasts</td>
<td>Topical administration</td>
<td>Full thickness wounds with wound splinting</td>
<td>Improved wound healing, greater with fibroblasts compared to ADSC Paracrine effect via growth factors and differentiation into keratinocytes and endothelial cells Increased deposition of matrix elements and increased production of growth factors</td>
<td></td>
</tr>
<tr>
<td>Ebrahimian et al (2009)</td>
<td>ADSC</td>
<td>Intravenous vs intramuscular</td>
<td>Full thickness</td>
<td>Improved wound healing, visco-elasticity, and collagen deposition. Increased vascularity and capillary density Increased rate of wound healing with aggregates compared to suspension</td>
<td>Increased vascularity keratinocytes and capillary density</td>
</tr>
<tr>
<td>Amos et al (2010)</td>
<td>Human ADSC</td>
<td>Multicellular cell aggregates vs cell suspension</td>
<td>Full thickness dermal wounds</td>
<td>Improved wound healing, increased deposition of matrix elements and increased production of growth factors</td>
<td>Cell differentiation, recruitment of cells and paracrine effect via growth factors Paracrine effect via growth factor release and differentiation into other cell lines Paracrine effect and local differentiation of ADSC</td>
</tr>
<tr>
<td>Cianfarani et al (2010)</td>
<td>Mouse ADSC</td>
<td>Topical administration</td>
<td>Full thickness punch biopsy</td>
<td>Improved wound healing with use of non-diabetic ADSC compared to diabetic ADSC Improved healing in ADSC group compared to control and extract groups Accelerated wound healing</td>
<td>Paracrine effect via growth factors. Fibroblast work via stimulation proliferation and differentiation of keratinocytes and formation of basement membrane Paracrine effect via growth factor release and differentiation into endothelial cells</td>
</tr>
<tr>
<td>Lim et al (2010)</td>
<td>Mouse ADSC and cell extract</td>
<td>Local intradermal injection</td>
<td>Wound healing splint model</td>
<td>Improved healing in both dermal fibroblast group and ADSC, but more effective with fibroblast</td>
<td>Paracrine effect via growth factors. Fibroblast work via stimulation proliferation and differentiation of keratinocytes and formation of basement membrane</td>
</tr>
<tr>
<td>Nie et al (2011)</td>
<td>Rat ADSC</td>
<td>Local intradermal injection</td>
<td>Full thickness punch biopsy with wound splinting</td>
<td>Decreased wound size, increased collagen, thicker epidermis and dermis with increased vascularity</td>
<td>Recruitment of endogenous stem cells via cytokines and paracrine effect via growth factor release</td>
</tr>
<tr>
<td>Lee et al (2011)</td>
<td>Human ADSC and dermal fibroblasts</td>
<td>Topical administration</td>
<td>Wound healing split model</td>
<td>Improved healing in both dermal fibroblast group and ADSC, but more effective with fibroblast</td>
<td>Paracrine effect via growth factors. Fibroblast work via stimulation proliferation and differentiation of keratinocytes and formation of basement membrane</td>
</tr>
<tr>
<td>Elsharawy et al (2012)</td>
<td>Human umbilical cord SC</td>
<td>Local injection</td>
<td>Right front leg punch biopsy</td>
<td>Improved wound healing Improved wound healing</td>
<td>Paracrine effect via growth factor and differentiation into endothelial cells</td>
</tr>
<tr>
<td>Shin et al (2013)</td>
<td>Human BM SC</td>
<td>Local injection</td>
<td>Excisional wound splinting</td>
<td>Improved wound healing Improved wound healing</td>
<td>Paracrine effect via growth factor and differentiation into endothelial cells</td>
</tr>
</tbody>
</table>

Table 1. Studies using MSCs for wound healing in animals.
Diabetic ulcers occur due to poor vascularity and neural damage resulting in areas of inflammatory infiltrate and necrosis16,21. Moreover, diabetic patients have fewer endogenous MSCs23,24 and a lower percentage of these cells express stem cell specific markers25. Lee et al26 reported that this reduction in MSCs was also seen in ADSCs populations. Not only are MSC and ADSC populations depleted in diabetes, their ability to proliferate is severely impaired24,26. This impairment influences general cellular functioning, as well as their ability to migrate to sites of injury23,27,37. Multiple factors associated with hyperglycemia result in MSC dysfunction. These factors include oxidative stress due to the generation of reactive oxygen species, the accumulation of Glycosylation end products and the reduced expression of growth factors19. MSCs in wound sites show perturbations in the inflammatory phase resulting in extracellular matrix breakdown and decreased production and functionality of various growth factors17,27,25. In addition, the wound itself demonstrates diminished granulation tissue deposition with increased fibroblast apoptosis24. These factors lead to impaired wound healing in people with diabetes.

HIF-1 plays such a vital role in coordinating wound healing that disruption of its functioning would affect the healing process. Xiao et al28 reported that methylglyoxyl, a byproduct of glycoly-

Table 1 continued. Studies using MSCs for wound healing in animals.

<table>
<thead>
<tr>
<th>Investigators</th>
<th>Cell Type and Source</th>
<th>Method of Delivery</th>
<th>Wound type</th>
<th>Outcome</th>
<th>Proposed Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrestha et al (2013)</td>
<td>Human umbilical cord MSC</td>
<td>Local administration of PBS vs CM vs MSC</td>
<td>Excisional wound healing model</td>
<td>Improved wound healing in CM and ADSC, complete healing in CM</td>
<td>Paracrine effect via growth factors</td>
</tr>
<tr>
<td>Zhang et al (2013)</td>
<td>Human ADSC</td>
<td>Systemic</td>
<td></td>
<td>Decreased proteinuria, inhibited glomerular hypotrophy and interstitial lesions and reduced podocyte injury</td>
<td>Paracrine effect via growth factor release</td>
</tr>
</tbody>
</table>

Table 2. The use of ADSCs in human wounds.

<table>
<thead>
<tr>
<th>Investigators</th>
<th>Cell Type and Source</th>
<th>Method of Delivery</th>
<th>Wound type</th>
<th>Outcome</th>
<th>Proposed Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collawn et al (2012)</td>
<td>Human ADSC</td>
<td>Inoculation into organotypic graft</td>
<td>Laser injury</td>
<td>Improved healing compared to control</td>
<td>Paracrine effect via release of growth factors and differentiation into other cell types</td>
</tr>
<tr>
<td>Lee et al (2012)</td>
<td>Human ADSC</td>
<td>Local injection</td>
<td>Chronic wound and necrotic wounds of patients with TAO and DM</td>
<td>Improved pain score and wound healing, increased vascularity</td>
<td>Paracrine effect of pro-angiogenic factors and antiapoptotic effect</td>
</tr>
<tr>
<td>Karaaltin et al (2012)</td>
<td>Human ADSC</td>
<td>Local injection</td>
<td>DM plantar wound</td>
<td>Improved healing</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Sung et al (2012)</td>
<td>Human ADSC</td>
<td>Local injection</td>
<td>Nasal necrosis</td>
<td>Complete resolution of necrosis</td>
<td>Paracrine effect and differentiation</td>
</tr>
<tr>
<td>Jo et al (2013)</td>
<td>Human ADSC</td>
<td>Local injection with a scaffold</td>
<td>Full thickness facial wounds</td>
<td>Improved wound healing</td>
<td>Paracrine stimulation with growth factor release, differentiating into endothelial cells and producing stromal contents.</td>
</tr>
</tbody>
</table>
Use of ADSC’s in animal models of wound healing

ADSCs and other MSCs have been demonstrated to enhance wound healing in multiple animal models. Initially, it was thought that ADSCs improved wound healing by differentiating into the various cell types that were deficient in the injured area. More recent research has reported that ADSCs and other MSCs function in a paracrine fashion, stimulating surrounding cells by secreting growth factors and cytokines as well as recruiting endogenous cells. Shrestha et al. reported that stem cells improved healing of diabetic wounds by secreting growth hormones such as VEGF, platelet-derived growth factor (PDGF), and keratinocyte growth factor (KGF). Ebrahimi et al. demonstrated the paracrine nature of ADSCs in the healing of radiation wounds and reported that wound healing was enhanced with the use of stem cells. ADSCs can also stimulate neovascularization by the production of VEGF, differentiate into keratinocytes, and produce KGF to stimulate surrounding cells.

Shin et al. demonstrated that administration of MSCs enhanced wound healing in a mouse model, and that transplanted MSCs secrete cytokines that attracted endogenous MSCs to the wound site. The transplanted MSCs, however, did not migrate to other areas of the body. Therefore, it was postulated that ADSCs did not directly influence wound healing as previously thought, but worked indirectly via local mediators.

These beneficial effects of ADSCs have been reported to work even if therapy was initiated days after injury. Moon et al. injected ADSCs into the limbs immediately and 7 days after inducing hind limb ischemia in nude mice. Both groups demonstrated improved vascularity and muscle repair compared to controls. The mechanism of healing was demonstrated to be due to the proangiogenic growth factor secretion by ADSCs (increased levels of GRO, PGF, EAN-78, MCP-1, IL-6, IL-8, TIMP-1, TIMP-2, MMP-1, MMP-9, and uPAR) which improved the blood supply and prevented apoptotic death of endothelial cells in the injured area.

The use of stem cells has also been shown to benefit chronic non-healing wounds such as diabetic ulcers. Kwon et al. investigated the effect of BMSCs in diabetic rat wounds and reported that diabetic wounds treated with BMSCs healed as well as wounds in control normal non-diabetic rats. Wounds induced in diabetic rats demonstrated poor healing, pronounced
polymorphonuclear (PMN) cell infiltration in the inflammatory phase, limited granulation tissue formation, deficient growth factor and collagen release and weak wound architecture. However, wounds treated with BMSCs improved healing by improving collagen metabolism and deposition as well as improving growth factor secretion and functionality.

Cianfarani et al investigated the effect of autologous versus allogenic ADSC use in wound healing and reported that both the intrinsic properties and functions in diabetic ADSCs were affected, potentially discouraging the utilization of autologous ADSCs administration in diabetic ulcers. Fewer stem cells isolated from diabetic mice expressed ADSC markers (CD49e, CD54, CD73, CD90, and Sca-1) and their ability to proliferate, migrate and exert paracrine effects were also decreased. The study also reported that ADSCs from diabetic mice demonstrate decreased granulation tissue and collagen deposition and poor wound healing compared with non-diabetic ADSCs. The authors concluded that if autologous ADSCs were to be used in diabetic patients the cells may require modification to improve their functionality (see future considerations).

Other cells types have also been assessed for their healing benefits in chronic wounds. Nambu et al compared wound healing with use of ADSC contained in a collagen gel matrix versus fibroblast which were contained in a collagen gel matrix and reported that while the wounds in both groups of mice healed, the fibroblast group was more effective. Despite their observations, ADSCs were the preferred therapeutic option due to their greater ease of acquisition and their immunocompatibility. Lee et al had similar findings in mice when comparing the effect of ADSCs with dermal fibroblasts.

The method of transplanting stem cells into the host niche is an important variable when considering the efficacy of different cell therapies. Most of the studies in this review administered the stem cells locally; either by intradermal injection or topical application. Amos et al further examined topical methods of ADSC application, namely multicellular aggregates versus cell suspension in diabetic wounds. The study reported that multicellular aggregates have better healing compared to cell suspensions, related to their increased secretion of ECM components and growth. This is an area that needs to be further studied to address the most effective application method of ADSCs. In addition, a multitude of possibilities exist in relation to regenerative potential of the ‘stromal’ vascular fraction’, the undifferentiated conglomerate of progenitor cells and stromal cells that are present in early uncultured lipoaspirate. It is thought that this combination of cells may provide cross talk and synergy with themselves and with host tissue to promote successful regeneration in many clinical situations. These progenitor cells, mostly derived from perivascular sites have potent regenerative capabilities. Although this is a step earlier than ADSCs and not the focus of this paper, it should however also be kept in mind as a potential regenerative tool. This is an area that needs to be further studied to address the most effective application method of ADSCs.

USE OF ADSC’S IN HUMAN WOUND HEALING MODEL

Multiple animal models have demonstrated the benefit of using ADSCs in chronic wounds (Table 1); however, only a limited number of studies have been performed on humans (Table 2). Lee et al investigated the effect of intramuscular application of ADSCs in individuals with refractory critical limb ischemia is a safe and effective alternative to other treatment modalities. Nearly two-thirds of study subjects reported improvement, with improved pain rating scales, claudication distance and collateral vessel formation. The authors hypothesized that the mechanism of action was due to paracrine effect via pro-angiogenic and antiapoptotic factor release.

Both Sung et al and Jo et al reported that the injections of ADSCs locally into full thickness facial wounds resulted in healing without complication and minimal scar formation. Although their findings were similar, ADSCs were the preferred therapeutic option due to their great ease of acquisition and their immunocompatibility. Lee et al had similar findings in mice when comparing the effect of ADSCs with dermal fibroblasts.

The method of transplanting stem cells into the host niche is an important variable when considering the efficacy of different cell therapies. Most of the studies in this review administered the stem cells locally; either by intradermal injection or topical application. Amos et al further examined topical methods of ADSC application, namely multicellular aggregates versus cell suspension in diabetic wounds. The study reported that multicellular aggregates have better healing compared to cell suspensions, related to their increased secretion of ECM components and growth. This is an area that needs to be further studied to address the most effective application method of ADSCs. In addition, a multitude of possibilities exist in relation to regenerative potential of the ‘stromal’ vascular fraction’, the undifferentiated conglomerate of progenitor cells and stromal cells that are present in early uncultured lipoaspirate. It is thought that this combination of cells may provide cross talk and synergy with themselves and with host tissue to promote successful regeneration in many clinical situations. These progenitor cells, mostly derived from perivascular sites have potent regenerative capabilities. Although this is a step earlier than ADSCs and not the focus of this paper, it should however also be kept in mind as a potential regenerative tool. This is an area that needs to be further studied to address the most effective application method of ADSCs.

FUTURE CONSIDERATIONS
The effect of diabetes on the function of endogenous stem cells needs to be taken into consideration when using autologous ADSCs in the management of diabetic wounds. These cells may require in vitro ma-
nipulation to enhance their paracrine activity. Genetic modification is an option, but it poses the risk of inserting a mutation that may affect the safety of the ADSCs use in clinical practice. To overcome this, non-genetic options have been explored to enhance the functioning of diabetic ADSCs.

Hypoxic pre-conditioning has been shown to enhance ADSC functioning. Lee et al. investigated the effect of hypoxia on ADSCs and wound healing and reported that ADSCs exposed to 2% hypoxic conditions exhibited better survival and proliferative capacity and demonstrated enhanced collagen deposition after application at the wound site when compared to cells culture in normoxic condition. The ADSCs exposed to hypoxia showed enhanced growth factor release (VEGF, bFGF and IGF-1) compared to ADSCs exposed to normoxia. Hioso et al. demonstrated that hypoxic pre-conditioning of ADSCs in vitro enhanced their in vivo functioning and upregulated growth factor and cytokine release (VEGF, angiogenin (ANG) and IL-8) based on the duration of hypoxia. Subcutaneous implantation of sponges on which pretreated hypoxic ADSCs were cultured, also manifested increased angiogenesis. Both of these studies demonstrated that hypoxic pretreatment of ADSCs enhance their functioning which may lead to improved wound healing in hypoxic, inflamed diabetic ulcers. This would be advantageous as diabetic wounds are inherently hypoxic.

Other protocols that have demonstrated ADSC function potentiation include pretreatment with growth factors. ADSCs treated with TGF-β1 reportedly functioned as a wound healing accelerator in a study by Cho et al. The ADSC treated with TGF-β1 influenced fibroblast functioning by increasing proliferation and migration of fibroblasts. Collagen deposition ability was also slightly increased the use of these ADSCs.

ADSC characteristics also vary depending on their source. Cells harvested from the abdominal regions are more resistant to apoptosis. Additionally, greater concentrations of stem cells are found in subcutaneous regions when compared to visceral fat. Interestingly, cells isolated from the inguinal regions are more plastic compared to ADSCs isolated from others. These factors require further investigation so as to optimize and match ADSC harvest and injection sites to achieve therapeutic goals individualized to diabetic recipients.

The best technique for the administration of ADSCs also requires standardization. Current delivery methods include injecting cells with (1) ECM components or scaffold, (2) growth factors or cytokines or (3) as part of re-engineered tissue. Tian et al. identified deficient lipid mediators such as 14,21R-diHDHA in a murine model of diabetic wounds. The subsequent replenishment of this mediator in combination with ADSCs further enhanced wound healing. The above mentioned are examples of how ADSC can be manipulated and matched to patient requirements. There is an urgent need for additional studies to address enhancement of stem cell function for use in chronic wound management.

CONCLUSIONS
Wound healing is a complex process that involves interplay of various biochemical and cellular factors. Stem cells play an important role in modulating the healing process through paracrine interactions. This role is impaired by diabetes resulting in poor wound healing and chronic wounds. ADSCs have been used to enhance the healing process and their benefit has been observed in various animal studies and human trials. They function in a paracrine manner stimulating surrounding cells and promoting angiogenesis. Though diabetes impairs their functionality, diabetic ADSCs can be manipulated to enhance their activity. Further investigation is required into ADSCs to determine their potential utility in treating chronic non-healing wounds.

CONFLICT OF INTERESTS:
The Authors declare that they have no conflict of interests.

REFERENCES

