
The NIH CIT Consortium Chemistry Manufacturing Controls Monitoring Committee:

The NIH CIT Consortium

Massachusetts General Hospital: S. Deng, J. Lei, J.F. Markmann

NIDDK: T.L. Eggerman

University of Illinois, Chicago: B. Barbaro, J. Martellotto, J. Oberholzer, M. Qi, Y. Wang

University of Wisconsin: L. Fernandez, D.B. Kaufman, L. Zitur

Uppsala University: D. Brandhorst, A. Friberg, O. Korsgren

Supported by grants from the National Institute of Allergy and Infectious Diseases and the National Institute for Diabetes and Digestive and Kidney Diseases.

- At Emory University, U01AI089317.
- At Northwestern University, U01AI089316.
- At the University of Alberta, Edmonton: U01AI065191.
- At the University of California, San Francisco, U01DK085531.
- At the University of Illinois, Chicago, 5U01DK070431-10.
- At the University of Iowa, U01DK070431.
- At the University of Miami, U01DK070460.
- At the University of Minnesota, U01AI065193.
- At the University of Pennsylvania, U01DK070430.
- At Uppsala University, U01AI065192.

In addition, the study was supported by the following GCRC and CTSA awards:

- At Emory University: UL1TR000454.
- At Northwestern University: 5UL1RR025741 and 8UL1TR000150.
- At the University of California, San Francisco, UL1TR000004.
- At the University of Illinois, Chicago, UL1TR000050.
- At the University of Miami: 1UL1TR000460.
- At the University of Minnesota: 5M01-RR000400 and UL1TR000114.
- At the University of Pennsylvania: UL1TR000003.

Address correspondence to: Camillo Ricordi MD, Chairman, CIT Steering Committee, ricordi@miami.edu

To cite this article

CellR4 2015; 3 (1): e1437
1.0 APPROVALS:

Bernhard Hering, M.D.
University of Minnesota, Minneapolis, Minnesota

Ali Naji, M.D., Ph.D.
University of Pennsylvania, Philadelphia, Pennsylvania

Camillo Ricordi, M.D.
University of Miami, Miami, Florida

A. M. James Shapiro, M.D., Ph.D.
University of Alberta, Edmonton, Alberta, Canada

Dixon Kaufman, M.D., Ph.D., FACS
Northwestern University, Chicago, Illinois

Christian P. Larsen, M.D., D. Phil.
Emory University, Atlanta, Georgia

James F. Markmann, M.D., Ph.D.
Massachusetts General Hospital, Boston, Massachusetts

Peter Stock, M.D., Ph.D.
University of California, San Francisco, California

Jose Oberholzer, M.D.
University of Illinois at Chicago

Christine W. Czarniecki, Ph.D.
DAIT, NIAID, NIH, Bethesda, Maryland

Changes to this Specification Document must be proposed to the Chief, Regulatory Affairs, DAIT, NIAID, NIH, and approved by all the original signatories, or their successors, before implementation.
2.0 Requirements:

<table>
<thead>
<tr>
<th>TEST</th>
<th>METHOD</th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipient Identity</td>
<td>Visual Inspection</td>
<td>Recipient Study ID # and Recipient Medical Record Number on this CoA and on each infusion bag label are identical to that in the Production Batch Record, Section 12.3</td>
</tr>
<tr>
<td>Islets Identity</td>
<td>DTZ Stain & Microscopic Examination</td>
<td>Islets are present in each product bag</td>
</tr>
<tr>
<td>VOLUMES IN BAGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension Volume</td>
<td>Direct Measurement</td>
<td>200 mL per product bag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 600 mL total in three product bags</td>
</tr>
<tr>
<td>Settled Tissue Volume</td>
<td>Direct Measurement after 5-minute settling</td>
<td>≤ 7.5 mL per product bag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 15.0 mL total in three product bags</td>
</tr>
<tr>
<td>POTENCY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Purity Islets GSIR Index (Pre-culture Sample)</td>
<td>Glucose Stimulated Insulin Release by ELISA</td>
<td>For Information Only</td>
</tr>
<tr>
<td>High Purity Islets GSIR Index (Post-culture Sample)</td>
<td>Glucose Stimulated Insulin Release by ELISA</td>
<td>Glucose Stimulated Insulin Release Index > 1</td>
</tr>
<tr>
<td>Islets Quantity</td>
<td>DTZ Stain & Microscopic Examination</td>
<td>First Infusion: ≥ 5.0 × 10^3 IEQ/kg of Recipient’s Body Weight (Total IEQ/infusion) Subsequent Infusions: ≥ 4.0 × 10^3 IEQ/kg of Recipient’s Body Weight (Total IEQ/infusion)</td>
</tr>
<tr>
<td>Viability</td>
<td>FDA/PI Stain & Microscopic Examination</td>
<td>≥ 70% in each product bag</td>
</tr>
<tr>
<td>PURITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Islets Concentration</td>
<td>DTZ Stain & Microscopic Examination</td>
<td>≥ 20,000 Total IEQ/mL Total Settled Tissue Volume</td>
</tr>
<tr>
<td>SAFETY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td>Visual Inspection</td>
<td>Light yellow to amber liquid with visible aggregates in each product bag</td>
</tr>
<tr>
<td>Endotoxins</td>
<td>LAL</td>
<td>≤ 5.0 EU/kg of Recipient’s Body Weight (Total EU/infusion)</td>
</tr>
<tr>
<td>Gram Stain (Islets Purity Levels Pre-combination Samples)</td>
<td>Gram Stain</td>
<td>No Organisms Seen</td>
</tr>
<tr>
<td>Sterility</td>
<td>Sterility (21CFR610.12 or validated alternate)</td>
<td>No growth in each product bag</td>
</tr>
</tbody>
</table>