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Clinical intraocular islet transplantation is not a number issue
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Abstract

It is now well established that beta cell replace-
ment through pancreatic islet transplantation 
results in significant improvement in the quali-
ty-of-life of type 1 diabetes (T1D) patients. This 
is achieved through improved control and pre-
vention of severe drops in blood sugar levels. Islet 
transplant therapy is on the verge of becoming 
standard-of-care in the USA. Yet, as with oth-
er established transplantation therapies, there 
remain hurdles to overcome to bring islet trans-
plantation to full fruition as a long-lasting ther-
apy of T1D. One of these hurdles is establishing 
reliable new sites, other than the liver, where du-
rable efficacy and survival of transplanted islets 
can be achieved. In this article, we discuss the an-
terior chamber of the eye as a new site for clinical 
islet transplantation in the treatment of T1D. We 
specifically focus on the common conceptions, 
and preconceptions, on the requirements of islet 
mass, and whether or not the anterior cham-
ber can accommodate sufficient islets to achieve 
meaningful efficacy and significant impact on 
hyperglycemia in clinical application.

Introduction

Recent results from the Clinical Islet Transplan-
tation (CIT) Consortium trials showed that pan-
creatic islet transplantation in the liver improves 

blood sugar control significantly and reduces se-
vere hypoglycemia episodes in type 1 diabetes 
(T1D) patients1. This leads to significant improve-
ment in the patients’ quality-of-life2-4. However, 
it has also become evident that due to the imme-
diate blood-mediated immune reaction (IBMIR) 
and other liver-related issues (e.g., hypoxia, highly 
enzymatic and inflammatory environment, high 
drug levels, etc.)5, the benefits of intrahepatic islet 
transplantation may be limited on the long-term6. 
Another concern, which is common to transplan-
tation therapies in general, is about the serious 
and potentially life-threatening side effects asso-
ciated with the required life-long systemic immu-
nosuppression to avoid graft rejection6,7. Clinical 
evidence also shows that long-term success of 
islet transplantation therapy may be hindered by 
recurrent autoimmunity8,9.  Therefore, to realize 
the full benefits of islet transplantation there re-
main two unmet critical needs to: 1) establish new 
islet transplantation sites with no added “strain” 
on the islet grafts as has been shown in the liver; 
and 2) achieve long-term efficacy and survival of 
islet grafts without the need for life-long systemic 
immunosuppression or its complications through 
induced graft immune tolerance. 

New approaches to minimizing and/or elimi-
nating immunosuppression are under investiga-
tion10-16; however, such approaches must be paired 
with new transplantation sites to ensure better en-
graftment and long-term function of transplanted 
islets. Consequently, different new sites for islet 
transplantation including but not limited to the 
omentum, subcutaneous, intramuscular, and the 
bone marrow have been investigated17-20. Consis-
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Glycemia and body weight monitoring

Glycemia was measured using portable glucome-
ters (OneTouchUltra2; LifeScan, CA, USA) using 
a drop of blood from the tail vein. 

Results

Based on clinical and preclinical experience in islet 
transplantation in the liver and other sites, research 
investigators have gravitated towards transplanting 
large numbers of islets to restore euglycemia in an-
imal models of diabetes. Interestingly, an islet dose 
of 5,000 IEQ/kg under the kidney capsule, which 
corresponds to ~100 islets in an average mouse 
weighting 20 g, has been widely accepted as suf-
ficient islet mass to restore euglycemia in mouse 
models of islet transplantation26. Moreover, since 
our introduction in 2008 of islet transplantation 
in the anterior chamber of the eye23, we collected 
anecdotal evidence that even fewer islets may be 
sufficient to restore euglycemia in diabetic mice 
transplanted either under the kidney capsule or in 
the anterior chamber of the eye. 

Therefore, to methodically and unequivocally 
address this issue we performed titration stud-
ies to assess the minimal islet mass required 
to restore euglycemia following intraocular islet 
transplantation (Figure 1A). We performed these 
studies in the streptozotocin (STZ)-induced di-
abetes C57BL/6 (B6) mouse model and in the 
spontaneously diabetic AKITA mouse. We trans-
planted 4-6 week old diabetic male AKITA mice 
in the anterior chamber of the eye with syngeneic 
(B6) 100 IEQ (~3,500 IEQ/kg at the onset of eug-
lycemia post-transplant), and we monitored their 
nonfasting blood glucose levels and body weight 
longitudinally (Figure 1B). The median time to re-
verse diabetes (i.e., to achieve euglycemia; defined 
as 3 consecutive glycemia readings ≤200 mg/dL) 
following transplantation was 54 days; and 100% 
of the mice achieved stable euglycemia by 60 days 
post-transplant (Figure 1C). Notably, steady nor-
malization of glycemia occurred despite a progres-
sive and significant increase in the recipients’ body 
weight (dashed lines in Figure 1B). Similarly, we 
transplanted STZ-induced diabetic B6 mice with 
as few as B6 75 IEQ (i.e., ~2,500 IEQ/Kg) and as 
many as 500 IEQ (i.e., ~17,000 IEQ/Kg); the mice 
transplanted with 75 or 150 IEQ had a median dia-
betes reversal time of 77 and 58.5 days, respective-
ly, compared to 26 days in those transplanted with 
300 and 500 IEQ (Figure 1D).

tent with these efforts, we have been investigating 
the immune privileged anterior chamber of the 
eye as a potential site for clinical islet transplanta-
tion, where transplanted islets thrive during early 
engraftment due to high oxygen tension and can 
potentially survive long-term with minimal to no 
immunosuppression21. 

Our extensive studies have demonstrated the 
feasibility and efficacy of intraocular islet trans-
plantation in preclinical models22-25, and this has 
recently led to a significant first step in the clini-
cal implementation of this novel approach to islet 
transplantation. We have obtained FDA approval 
(IND 017007) to conduct a pilot clinical trial to 
assess primarily the safety and secondarily the 
efficacy of pancreatic islet transplantation into the 
anterior chamber of the eye of legally blind T1D 
patients with a stable kidney transplant (i.e., al-
ready on immunosuppression). The purpose of this 
article is to discuss in the context of preclinical and 
clinical evidence whether the human eye anterior 
chamber is big enough to accommodate sufficient 
islet mass in clinical application. 

Materials and methods

All animal procedures were performed under pro-
tocols approved by the University of Miami IA-
CUC.

Mice

C57BL/6J (B6) and AKITA mice were purchased 
from Jackson Laboratories (JAX) and housed un-
der the supervision of the University of Miami’s 
Department Veterinary Resources (DVR). 

Diabetes induction

Acute induction of diabetes in B6 mice was 
achieved via single intravenous injection (150-220 
mg/kg) of Streptozotocin (STZ). Frank diabetes 
was defined as 3 (three) consecutive readings of 
nonfasting glycemia ≥300 mg/dL. Heterozygous 
male AKITA mice developed severe hyperglyce-
mia spontaneously during the first 3-6 weeks of 
life and no induction of diabetes was necessary.

Islet isolation and transplantation 
into the eye anterior chamber

Pancreatic islets were isolated from B6 donor mice 
as previously described26. Islet transplantation into 
the eye anterior chamber of was performed as pre-
viously described in details23,27,28. 
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following transplantation in the liver. Yet, benefits 
observed following intrahepatic islet transplanta-
tion, such as restored hypoglycemia awareness, 
have been shown to be retained by transplanted 
patients long after getting back on insulin therapy 
due to graft failure and/or rejection29,30. Notably, 
clinical evidence further indicates a lack of cor-
relation between the number of transplanted islets 
and the clinical outcome1. Thus, the number of 
transplanted islets needed to meaningfully im-
pact on hyperglycemia varies significantly among 
patients, and may not necessarily be as large as 

Discussion

Although extrapolation of preclinical findings, es-
pecially from small animals such as rodents, to the 
clinical setting is not straightforward, the above 
findings demonstrate that small numbers of islets 
are capable, albeit with delay, of achieving signif-
icant improvements in glycemic control following 
islet transplantation in the anterior chamber of the 
eye. This notion was further supported in our pre-
vious studies in the baboon22. Moreover, clinical 
experience shows that a substantial amount of islets 
is lost due to IBMIR, inflammation, and apoptosis 
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Figure 1. Pancreatic islet transplantation in the eye anterior chamber. (A) Photo of AKITA mouse eye transplanted with 100 
IEQ showing islets engrafted on top of the iris individually or in clusters. (B) Longitudinal glycemia (solid lines; left Y axis) 
and body weight (dashed lines; right Y axis) record of diabetic male AKITA mice (n=4) which were transplanted with 100 IEQ 
B6 islets. Euglycemia was defined as 3 consecutive blood glucose readings ≤200 mg/dL (dotted line). (C, D) Kaplan-Meyer 
curves summarizing the % normoglycemic mice (expressed as “diabetes reversal rate”) following transplantation in (C) AKI-
TA (n=4) and (D) B6 recipients (n=2 for 75 IEQ and n=3 for 150, 300, and 500 IEQ groups).
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commonly assumed. It is likely that the notion that 
a very large number of islets is needed has been 
reinforced by the mixed experience with intrahe-
patic islet transplantation, and it may not hold true 
in more islet-friendly transplantation sites. 

Studies estimate the total number of islets in the 
human endocrine pancreas between 0.5-1 million 
islets31. Data from pancreatectomized patients also 
suggest that only 15-30% of the functional beta cell 
mass may be needed to maintain glucose homeo-
stasis 32, 33. Thus, the required number of islets to 
maintain euglycemia can be estimated at 125,000-
250,000 islets; and in an average 80 kg human 
subject, this equates to ~1500-3000 IEQ/Kg. This 
is consistent with what may remain in the liver 
following a conservative 50% loss of infused islets 
due to IBMIR and initial inflammation/apoptosis; 
hence, an effective intrahepatic islet mass may be 
lower than 1,500-2,000 IEQ/kg with higher loss 
rates34,35. Importantly, an islet dose of 1,000-2,000 
IEQ/kg in an average diabetic subject weighing 80 
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plantation can be effective in conveying significant 
improvement in blood sugar control and prevention 
of severe hypoglycemia in T1D patients. Moreover, 
if safety is proven islets can also be transplanted 
into the second eye of the same individuals.
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strates the feasibility, safety, and efficacy of in-
traocular islet transplantation in preclinical mod-
els22,23,25,38-41. Importantly, the anticipated clinical 
trial will determine its safety profile and establish 
unequivocally if the anterior chamber of the human 
eye can host enough islets to sufficiently impact on 
hyperglycemia. 
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