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Abstract
Mesenchymal Stem Cells (MSCs) possess im-
portant characteristics that could be exploited in 
therapeutic strategies for Type 1 Diabetes (T1D) 
and for certain complications of Type 2 Diabetes 
(T2D). MSCs can inhibit autoimmune, alloim-
mune and inflammatory processes. Moreover, 
they can promote the function of endogenous and 
transplanted pancreatic islets. Furthermore, they 
can stimulate angiogenesis. MSC functions are 
largely mediated by their secretome, which in-
cludes growth factors, exosomes, and other extra-
cellular vesicles. MSCs have shown a good safety 
profile in clinical trials. MSC-derived exosomes 
are emerging as an alternative to the transplanta-
tion of live MSCs. MSCs harvested from different 
anatomical locations (e.g. bone marrow, umbilical 
cord, placenta, adipose tissue, and pancreas) have 
shown differences in gene expression profiles and 
function. Data from clinical trials suggest that 
umbilical cord-derived MSCs could be superior 
to bone marrow-derived MSCs for the treatment 
of T1D. Autologous MSCs from diabetic patients 
may present abnormal functions. BM-MSCs 
from T1D patients exhibit gene expression dif-
ferences that may impact in vivo function. BM-
MSCs from T2D patients seem to be significantly 
impaired due to the T2D diabetic milieu. In this 
review, we highlight how the harvesting site and 
donor derivation can affect the efficacy of MSC-
based treatments for T1D and T2D.

Cell-based strategies for diabetes
Glucose metabolism and glycemia are controlled 
by the secretion of insulin from pancreatic islet 

beta cells. Beta cells can be lost, can be impaired, 
or can become impaired due to very different me-
chanisms. The lack or insufficiency of their insulin 
release function leads to a group of diseases with 
characteristic pathological features: abnormal me-
tabolism of carbohydrates and elevated levels of 
glucose in the blood and urine1.

Type 1 diabetes (T1D) is a multifactorial chronic 
disorder that is characterized by the autoimmune de-
struction of insulin-producing pancreatic beta cells: 
the disease becomes clinically overt when the vast 
majority of beta cell lose function or are lost2-4. To 
date, there is no definitive cure for this disease and 
life-long exogenous insulin replacement is required5. 

Differently, Type 2 diabetes (T2D) is characte-
rized by insulin resistance, hyperglycemia and 
eventually dysfunction of the insulin-producing 
cells, and it is mainly caused by diet and lifestyle 
choices6. 

Transplantation of cadaveric pancreas or pan-
creatic islets can correct diabetes-restoring nor-
mo-glycemia in T1D patients7-11. Unfortunately, 
the low number of organs available for transplan-
tation and the need for immunosuppression (often 
characterized by serious side effects12) limit these 
transplantation strategies13. The identification of 
an inexhaustible source of transplantable insulin 
producing beta cells is an important hurdle that 
still needs to be overcome13, but the recent acti-
vation of clinical trials testing the safety of em-
bryonic stem cell-derived pancreatic progenitor 
cells represents an important milestone in that di-
rection (NCT 02239354, ClinicalTrials.gov). Beta 
cell replacement would be extremely beneficial 
for T1D patients, and beta cell supplementation 
could be beneficial for a subset of T2D patients. 
Nevertheless, patients with T1D and T2D would 
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to derive from their release of cytokines and soluble 
factors – molecules determine immunosuppressive, 
anti-inflammatory, pro-angiogenic and pro-rege-
nerative changes (Figure 1)37. Alleviation of hyper-
glycemia seems to be the net result of a dampening 
of the immune responses, along with a stimulation 
of the survival and of the proliferation of pancreatic 
progenitors/beta cells38. MSC transdifferentiation 
towards insulin producing beta cells is not conside-
red a major therapeutic mechanism.

The pathways determining anti-inflammatory 
and immunosuppressive effects have not been 
completely elucidated, but direct contact with ef-
fector cells, the production of soluble mediators 
and the activation of regulatory cell subtypes, 
all may contribute to the MSC effect21-29,39,40. 
MSCs can inhibit dendritic cells differentiation 
and maturation, suppress the proliferation of 
CD4+ and CD8+ T cells, impair the cytotoxic ac-
tivity of cytotoxic lymphocytes, induce and ex-
pand T regulatory cells, and can balance T hel-
per subsets41,42. Thanks to the interaction of MSC 
receptors with ligands indicating inflamed envi-
ronments, MSCs selectively home in inflamed tis-
sues and promote tissue repair and regeneration37. 
MSCs secrete several molecules (such as IL-6, 
IL-8, TGF-beta, TIMP-2, VEGF, HGF), which 
can stimulate tissue repair and act as chemo-at-
tractants, recruiting macrophages and endothe-
lial cells at the site of injury or inflammation43,44. 
MSCs also appear to have angiogenic and trophic 
potential that improve, in a co-transplant setting, 
the ability of pancreatic islets to survive the first 
few days after transplantation13. 

In fact, several models of islet transplantation 
showed positive effects of MSCs in promoting en-
graftment and increasing survival and function of 
beta cells45. MSCs from recipient rats mediated 
such an effect when co-transplanted with alloge-
neic islets, resulting in long term survival and su-
stained normoglycemia46. The effect of MSCs in 
this model could be due either to an anti-inflamma-
tory effect or an immunomodulatory effect, or to a 
combination of both. 

The positive effect observed in this study was 
paralleled by increased neoangiogenesis at the 
implant site, a key observation that highlights the 
multiple mechanisms of action of MSCs46,47. 

In stringent models of transplantation in fully al-
logeneic recipients, the co-administration of MSCs 
with islets led to highly significant prolongation of 

benefit from strategies that modulate immuni-
ty and inflammation, that protect or sustain beta 
cells, that improve islet transplantation and that 
stimulate angiogenesis. During the last decade, a 
cell population has catalyzed significant interest 
and has been tested in a number of clinical trials 
for diabetes: Mesenchymal stem cells (MSCs)14. 
MSC possess important characteristics that could 
be exploited in cell-based strategies for T1D and 
for complications of T2D. These cells showed a 
good safety profile in initial clinical trials for T1D 
and T2D. In order to maximize their therapeutic 
efficacy, important considerations related to the 
harvesting site and to donor derivation need to be 
made. 

Mesenchymal stem cells
Mesenchymal Stem Cells (MSCs) were first descri-
bed in the 1970s by Friedenstein et al15 who isola-
ted a population of cells from mouse bone marrow 
(BM) and showed these had the ability to form co-
lonies. About twenty years later Caplan16 defined 
the corresponding terminology, and approximately 
ten years later MSCs were identified in human adult 
BM17,18. MSCs are characterized by the adherence 
to plastic in culture, expression of a set of surface 
markers in the absence of lineage-specific marker 
expression, and potential to differentiate into mul-
tiple mesodermal lineages (osteoblasts, adipocytes, 
and chondroblasts)19,20. MSCs are potent immuno-
modulators, exerting suppressive functions on im-
mune effector cells and orchestrating the action of 
other regulatory cells21-29. MSCs are able to migrate 
to sites of inflammation and to regulate the traffic 
of different hematopoietic cells30. Moreover, MSCs 
have been shown to promote repair and regene-
ration of endogenous and transplanted islets14,31,32. 
Furthermore, they have shown a good safety profile 
in clinical trials, including a very limited risk of 
tumor formation32-34. 

The functional capacity of MSCs, together with 
their responsiveness to inflamed or damaged micro-
environments, have made them an attractive poten-
tial agent for many regenerative, anti-inflammatory, 
and auto-immune applications for a wide range of 
disorders35. MSC-based therapies for T1D are mo-
stly focused on alleviating hyperglycemia by inhibi-
ting autoimmunity, stimulating pancreatic beta cell 
regeneration and function. MSC-based therapies for 
T2D are more focused on the treatment of co-morbi-
dities36. The main therapeutic effect of MSCs seems 
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ved insulin therapy. The treatment was found to 
be safe; moreover, at one year after MSCs infu-
sion, most of the patients treated with MSC tran-
splantation showed the preservation of stimulated 
C-peptide secretion, a key marker of the insulin 
release from residual beta cells, whereas the con-
trol patients showed a decline in C-peptide levels. 
Patients in both the treated and control groups con-
tinued to require insulin therapy and there were no 
statistically significant differences in insulin requi-
rements and glycated hemoglobin levels between 
the two groups. 

Ongoing clinical trials are also testing the safe-
ty and efficacy of MSCs transplantation in patients 
with T2D14,31 in order to treat common complica-
tions of diabetes such as ulcers, limb ischemia, 

graft survival in rodent models48,49. In nonhuman 
primates, allogeneic MSCs significantly enhan-
ced engraftment and function of co-transplanted 
islets50. In a subset of animals, additional infusions 
of MSCs resulted in reversal of rejection episodes 
and prolongation of islet function50.

Several clinical trials are currently testing 
MSCs transplantation in patients with T1D and 
T2D14,32,51. So far, MSC transplantation has showed 
a good safety profile with a very limited risk of tu-
mor formation32.

An open label pilot trial52 enrolled T1D patients 
with recent onset of diabetes. Twenty patients were 
randomized to the group receiving transplantation 
of autologous bone marrow-derived MSCs (BM-
MSCs), or to the control group which only recei-

Figure 1. The effect of MSCs is largely mediated by their secretome. MSCs can promote the survival and function of islet beta 
cells. Moreover, they can stimulate islet revascularization and oxygenation. Furthermore, MSCs can protect islet beta cells from 
allogeneic and autoimmune responses. MSCs exert multiple immune-modulatory functions, including an inhibition of Effector T 
cell functions and of DC differentiation, and a stimulation of T reg functions. MSCs could be employed in therapeutic strategies 
for T1D and T2D: they could be utilized to protect and sustain endogenous or transplanted islet beta cells. Moreover, MSCs could 
be employed to stimulate angiogenesis and inhibit inflammation in complications of T1D and T2D.
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safe. The patients experienced a reduction in daily 
insulin requirement, showed a better control of 
blood glucose fluctuations, and experienced impro-
vements in quality of life57. Interestingly, a recent 
meta-analysis on clinical reports highlighted that 
the tissue source of the MSCs impacts the outcome 
of the cell therapy58. 

and nephropathy, and to improve metabolic con-
trol31,53,54. Treatment with MSCs was reported to 
be safe, it appeared effective in facilitating wound 
closure of diabetic foot ulcers55 and in inducing 
T reg cells in T2D patients56. Allogeneic placenta 
(PL)-derived MSCs were transplanted in 10 pa-
tients with T2D and the infusion was reported to be 

BOX 1. MSC-Derived exosomes and diabetes.

Exosomes (EXOs) are nanoscopic (30-100 nm) biological entities that are secreted as vesicles in the extracellular environment 
by many different types of cells59, including MSCs. MSC-derived exosomes (MSC-EXOs) are emerging as a new important 
paracrine mechanism for cell-to-cell communication, implicated in wound healing, injury and tissue repair. They are 
known to contain proteins, mRNAs and microRNAs60,61; moreover, they have immunostimulatory and immunoregulatory 
functions59,62,63. Certain EXOs and cargos present molecular signatures of pathological processes and could be implicated in 
the pathogenesis of multiple pancreatic diseases, such as T1D, T2D, diabetic nephropathy, diabetic retinopathy, gestational 
diabetes mellitus, and pancreatic cancer64,65. EXOs can be easily isolated from different body fluids collected by non-
invasive methods and therefore have the potential to be utilized for the analysis of disease biomarkers. EXOs can also be 
easily collected from the supernatant of in vitro cell cultures. EXOs derived from MSC cultures were shown to promote 
regulatory T cell (T reg) activity, inhibit Effector T cell, natural killer (NK) cells and dendritic cells (DCs) activities66,67. The 
advantages of using EXOs instead of live cells are connected to their minimal immunogenicity (allowing an allogenic use), 
low inherent toxicity68, and potentially lower risk for tumor formation69. Moreover, because of their chemical composition 
and small size, EXOs may easily diffuse across the biological barriers reaching target cells. A common assumption in the 
context of T1D is that imbalances between Effector T cells and T regs, as well as DC presentation of islet auto-antigens, 
play a major role in the destruction of islet β cells70,71. The beneficial effect of MSCs for the treatment of T1D derives largely 
from their immune-modulatory and anti-inflammatory secretome. Therefore, MSC-EXOs might be employed as immune 
modulators in MHC-mismatched recipients, overcoming the potential immunogenicity of MSC in an allogenic setting68. 
EXOs/microvescicles derived from endothelial progenitor cells combined with islets can activate angiogenesis improving 
revascularization and pancreatic beta cell function72. The same study observed that EXOs/microvescicles also inhibited 
endothelial-leukocyte interaction. MSC-EXOs could have similar proangiogenic effects. Sheng et al73 showed the other 
side of the coin: insulinoma-derived EXOs contain diabetes-triggering autoantigens that may stimulate autoreactive T cells 
inducing inflammatory cytokine secretion and activating antigen-presenting cells. In accordance with this study, suggesting 
that exosomes could serve as triggering factors for specific autoimmunity events leading to diabetes, also Rahman et al74 and 
Lukic et al75 propose a possible causative role of the islet MSCs and their EXOs in triggering the islet-specific autoimmunity 
in the NOD mouse strain. During beta cell apoptosis in the islet, MSCs might be activated or recruited in islets to repair the 
damage and, therefore, could become a source of EXOs able to initiate autoimmune response74. 

Harvesting site
An important open issue is represented by the site of 
MSCs harvest (Figure 1). Historically, as it was men-
tioned before, the bone marrow has been long investi-
gated as a source of stem cells, and therefore also the 
studies concerning MSCs in the context of diabetes 
were conducted on BM-MSCs. However, the clinical 
applicability of BM-MSCs is limited due to the rela-
tively invasive procedure required for sample collec-
tion as well as the marked reduction in cell number, 
proliferation, and differentiation capacity with the age 
of the donor76. Thus, various different tissues have 
been studied as alternatives sources of MSCs.

It is now accepted that MSCs can be harvested 
from multiple anatomical locations, and it has been 
widely assumed that MSCs derived from different 

sources are largely equivalent, at least in terms of 
surface marker expression and differentiation po-
tential. On the other hand, evidence suggests diffe-
rences in term of marker/gene expression profiles; 
these differences may have a profound impact on 
MSCs function13,77,78 and clinical efficacy58.

In recent years, multiple alternative sources of 
MSCs have shown a great potential, including umbi-
lical cord (UC), umbilical cord blood (UCB), and adi-
pose tissue (AT). Cells derived from UC and UCB are 
easily bankable and offer the theoretical advantage of 
youth6. The advantages of using MSCs from birth-as-
sociated tissues have been highlighted by Hass et al79; 
the use of parts of the neonatal placenta and umbilical 
cord/Wharton’s jelly is not invasive and raises no ethi-
cal concerns, MSCs from these tissues possess incre-
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In the context of diabetes, the source of the MSCs 
is considered important. Pancreas and pancreatic 
islet-derived MSCs (first isolated in 200184) could be 
considered a better option than other commonly used 
MSCs85. Pancreatic-islet derived MSCs may have the 
peculiar ability to enter the pancreatic endocrine dif-
ferentiation path, although the level of transcriptional 
and functional maturation is still far from that ex-
pected of true beta cells13. The increasing interest in 
pancreas-derived MSCs is due to their potential use 
for the modulation of immune function, stimulation 
of angiogenesis, and potentiation of islet endocrine 
functions; moreover, these cells may differentiate into 
beta like cells with a yield superior to that of MSCs 
from different sources, without the need of additional 
genetic engineering – but this differentiation poten-
tial is still debated85-89. As stated, the tissue source of 
the transplanted MSCs seems to impact the outco-
me of the therapy in the clinical setting: importantly, 
UC-MSCs appeared to be superior to BM-MSCs in 
improving C-peptide levels in T1D patients58. The 
main characteristics of MSC harvested from different 
sources are summarized in Table 1. 

Autologous or allogenic
Another important matter of debate is whether au-
tologous or allogenic MSCs are more suitable for 
therapeutic strategies in T1D and T2D. Under pa-
thological conditions, MSCs can become functio-
nally compromised. Autologous MSCs may present 
abnormal functions due to the autoimmune process 
in T1D, or due to the diabetic microenvironment in 

ased proliferative capacity in vitro, especially under 
hypoxic conditions, in comparison to certain MSCs 
populations obtained from adult tissues.

Another MSCs source that currently commands 
great attention is the adipose tissue (AT), which can 
be readily collected and processed for autologous 
use. AT-MSCs have been found to have proliferative 
ability and differentiation potential comparable to 
those of BM-MSCs80. Therefore, adipose tissue of-
fers important advantages when compared to bone 
marrow, given its availability and ease of collection.

It is now evident that MSCs from these tissues 
and from BM are morphologically and immuno-
phenotypically similar, but not identical81. UCB-
derived MSCs form the fewest colonies and show 
the highest proliferative capacity, whereas AT-
MSCs form the greatest number of colonies, and 
BM-MSCs have the lowest proliferative capacity. 
MSCs from AT and UCB82 may gain more popula-
rity because of the versatility of the tissue sources 
and because of their great potential for a wide ran-
ge of clinical applications.

Jeon et al83 isolated MSCs from the placenta and 
adipose tissue, and showed significant molecular 
differences in the properties of the MSCs accor-
ding to their cellular source. The cytoskeleton pro-
teins were abundantly expressed in BM-MSCs and 
in AT-MSCs, while the oxidative stress proteins 
and apoptosis proteins were abundantly expressed 
in PL-MSCs. Therefore, authors suggest that PL-
MSCs may be more appropriate for treatments that 
aim to increase therapeutic ability.

Abbreviations: BM, bone marrow; AT, adipose tissue; UC, umbilical cord (including Wharton’s Jelly); UCB, umbilical cord 
blood; PL, placenta; P, Pancreas; PI, Pancreatic Islets.

Table 1. Main characteristics of MSC harvested from different sources.

MSC Source	 Main characteristics	
				  
BM	 Long investigated. Invasive procedure for sample collection. 
	 Yield may be limited in aging individuals.
AT	 Morphologically and immunophenotypically similar to BM-MSC.
	 Proliferative ability and differentiation potential similar to BM-MSC. Easy accessible, highly 
	   available, easily bankable, no invasive procedure for sample collection.
	 Important advantages for autologous applications.
UC, UCB	 Morphologically and immunophenotypically similar to BM-MSC.
	 Increased proliferative capacity. Increased expression of oxidative stress proteins.
	 Easy bankable, no invasive procedure for sample collection.
PL	 Morphologically and immunophenotypically similar to BM-MSC.
	 Increased proliferative capacity. Increased expression of oxidative stress proteins.
	 Easy bankable, no invasive procedure for sample collection.
P, PI	 Features and differentiation capacity in line with those of MSC from other sources; potential for 
	   the stimulation of islet-specific functions, potentially easier differentiation into beta cells.
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tor alpha (TNFα) and interferon gamma (IFN-γ), or 
toll-like receptor (TLR) ligands94. In the study by Ya-
ochite et al93, microarray analysis was performed and 
no significant differences were observed in the ex-
pression of immunomodulatory genes (PDL1, NOS2, 
IL10, PTGES, TGFB1, PDL2, HLAG, and TGS6) and 
licensing-related genes (IFNGR2, TNFR1, IFNGR1, 
TNFR2, TLR4, and TLR3). However, the HGF gene 
was significantly downregulated in T1D BM-MSCs93. 

When administered to diabetic mice, both T1D-
MSCs and healthy donor-derived MSCs showed 
equal contribution to improving β-cell mass, incre-
asing insulin production and glucose tolerance93. 
Therefore it seems that T1D-MSCs do not present 
functional abnormalities93.

Accordingly, Dong et al95 reported that MSCs 
isolated from diabetic rats decreased blood glu-
cose levels and prevented body weight loss when 
transplanted into diabetic animals, suggesting that 
diabetes does not influence MSCs properties and 
supporting the use of autologous MSCs in the tre-
atment of T1D patients.

On the contrary, Fiorina et al96 supported the 
hypothesis that transplantation of MSCs derived 
from nondiabetic donors, rather than autologous 
MSCs, would be the best option for the treatment 
of T1D; in fact, they reported that MSCs isolated 
from non-obese diabetic (NOD) mice were unable 
to delay the onset of diabetes when administered to 
pre-diabetic NOD mice and did not reverse hyper-
glycemia with already established diabetes. 

Studies have demonstrated the beneficial role 
of MSCs on in vivo and in vitro induction/prolife-
ration of Treg cells97,98, but neither the study con-
ducted by Yaochite et al93, nor the study by Fiorina 
et al96 observed significant modifications. Opposite 
results were reported by Madec et al99. Yaochite93 
suggested that their analyses were performed 35 
days after MSCs administration, which may repre-

both T1D and T2D. The main characteristics of au-
tologous BMMSCs isolated from T1D and T2D pa-
tients are summarized in Table 2 Allogeneic MSCs 
may be recognized and may be rejected by the 
competent immune system of the recipient90, may 
transmit donor-derived infections or diseases52. 

Studies addressing potential abnormalities in 
MSCs derived from patients with autoimmune or 
inflammatory disorders are scarce and somewhat 
contradictory. To date, available evidence is still 
not strong enough to support a recommendation, 
and more studies should be performed in order to 
fully establish advantages and weaknesses of auto-
logous or allogeneic MSCs.

Thus, studies that investigate characteristics of auto-
logous MSCs isolated from both T1D and T2D patients 
are essential to improve the knowledge of the effect that 
the host environment has on stem cell function, and 
therefore to guide future clinical applications.

Autologous T1D-MSCs
Recent studies analyzing functions of T1D BM-
MSCs demonstrated that T1D and healthy BM-
MSCs exhibit no differences in term of morpho-
logy, immune-suppressive activity, and migration 
capacity91-93. However, some studies revealed dif-
ferential expression of genes related to cytokines, 
immunomodulation, and wound-healing potential, 
which would be important to investigate further.

A study by Yaochite et al93 evaluated the in vi-
tro properties and the in vivo therapeutic effica-
cy of BM-MSCs isolated from newly diagnosed (6 
weeks, corresponding to early stages after clinically 
overt disease) T1D patients. T1D BM-MSCs showed 
morphology, immunophenotypic profile, and adi-
pocyte differentiation capacity comparable to healthy 
MSCs. MSCs in inflammatory environments develop 
immunosuppressive functions by molecules of acute 
phase inflammation, especially tumor necrosis fac-

Table 2. Main characteristics of autologous BM-MSCs isolated from T1D and T2D patients.

Autologous T1D BM-MSCs	 Autologous T2D BM-MSCs	
				  
No differences compared to healthy BM-MSCs	 No differences compared to healthy BM-MSCs
  in term of morphology, immune-suppressive activity, 	   in term of phenotype, morphology, and multilineage 
  and migration capacity	   differentiation potential
Differential expression of genes related to cytokines,	 Decreased potency, these cells appear to be terminally 
  immunomodulation, and wound-healing potential	   differentiated
	 Dysfunctional secretome composition, affecting 
	   pro-angiogenic functions
	 Several oxidative stress-dependent dysfunctions
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cell survival101,102, it can stimulate kidney and liver 
regeneration. Moreover, HGF is believed to be a 
protective factor for pancreatic β cells, and conse-
quently its downregulation may indicate a decrea-
sed potential for the stimulation of pancreatic islet 
regeneration. Additionally, EGFR and FGFR were 
also found downregulated in T1D-MSCs: these re-
ceptors regulate stemness, inhibit senescence, are 
essential for cell growth, tissue repair, and home-
ostasis103,104; a downregulation of EGFR signaling 
may determine the downregulation of HGF103,105,106. 
This study analyzed MSCs after in vitro culture; 
therefore, the abnormalities found could be influen-
ced by culture conditions beyond the exposure to 
the altered diabetic bone marrow milieu. Further 
functional experiments will be required in order to 
better elucidate how these gene expression altera-
tions may affect therapeutic efficacy of autologous 
MSCs in T1D patients92.

Autologous T2D-MSCs 
The studies focused on autologous T2D BM-MSCs 
suggest that long-term exposure to the disease-rela-
ted inflammatory and hyperglycemic environment 
affect their functions. 

Shin and Peterson107 examined the influence of 
T2D on the therapeutic potential of endogenous 
BM-MSCs, showing that the diabetic mice had 
BM-MSCs occurring in lower numbers, with im-
paired proliferation and survival in vitro. 

The study conducted in 2009 by Phadnis et al108 
investigated the characteristics of BM-MSCs deri-
ved from T2D patients. As it was described by the 
articles cited in this review about T1D91-93, also T2D-
MSCs appear similar to healthy MSCs in phenotype, 
morphology, and multilineage differentiation poten-
tial. However, the diabetic environment seems to have 
an impact on MSCs: C-peptide and insulin transcripts 
can be detected in T2D-MSCs108. Kojima and colle-
agues had previously observed that hyperglycemia, 
with or without established diabetes, activates insulin 
gene transcription and proinsulin production in multi-
ple extrapancreatic and extrathymic tissues109.

However, unlike in β-cells, MSCs from T2D 
exclusively produced proinsulin and very little ma-
ture insulin, and did not contribute significantly to 
insulin production in vivo108. Although high gluco-
se concentration induces proinsulin transcription, 
it also stimulates the secretion of cytokines such as 
interleukin1, which cause β-cell apoptosis in vitro 
and in vivo110. Kojima et al109 hypothesized that the-

sent too long a period of time to detect alterations 
in Treg cell frequency. Therefore, on the one hand 
further experiments should be performed earlier 
after cell transplantation, and on the other hand 
the beneficial effects promoted by administration 
MSCs are not related to late or long-standing ex-
pansion of Treg cells93.

Another recent study by Davies et al91 investi-
gated whether BM-MSCs from T1D patients offer 
a therapeutic cell source equivalent to healthy do-
nors BM-MSCs. Differences in gene expression 
were observed between healthy and late-stage 
T1D donors in relation to cytokine secretion, 
immunomodulatory activity, and wound-healing 
potential - suggesting a state of disease memory 
in these cells. Long-term exposure to the diabetic 
environment has been suggested to induce disea-
se memory in BM-MSCs100. Despite differential 
gene expression, T1D-MSCs did not demonstrate 
a significant difference from healthy controls in 
immunosuppressive activity, migratory capacity, 
or hemocompatibility. Therefore, the authors con-
cluded that MSCs from T1D donors are phenot-
ypically and functionally similar to healthy con-
trol MSCs indicating their suitability for use in 
autologous cell therapy91.

In another recent study by de Lima et al92, BM-
MSCs from newly-diagnosed T1D patients (within 
6 weeks from diagnosis) were compared with 
those from healthy individuals for morphological 
characteristics, immunophenotypical characteri-
stics, differentiation potential, and gene expres-
sion profile. T1D-MSCs and control MSCs show-
ed similar morphology, immunophenotype, and 
multipotent differentiation, as reported by others, 
but T1D-MSCs showed an increased migratory 
capacity. Importantly, T1D-MSCs showed abnor-
malities in mRNA expression, including a down-
regulation of the immunomodulatory molecules 
VCAM-1, CXCL12, CCL2, CCL24, CXCL5, of the 
pro-regenerative molecule HGF, of the stemness-
related EGFR and FGFR, along with the activation 
of sympathetic nervous system and JAK STAT 
signaling92. This gene expression profile suggests 
that human T1D-MSCs may have impairments in 
their interactions with immune/hematopoietic cell 
populations and in their ability to suppress immune 
effector functions. In accordance with what Davies 
et al91 had found, the study by de Lima et al92 also 
confirmed the down-modulation of HGF in T1D-
MSCs. HGF is associated with angiogenesis and 
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demonstrated a specific secretory phenotype of ex-
tracellular matrix remodeling and glucose metabo-
lism, showing overexpressed proteins involved in 
extracellular matrix homeostasis and remodeling-
related molecules123; in contrast, proteins involved 
in the metabolism of glucose (such as ALDOA, 
LDHA, KPYM, G6P, PTMA, OAS2, ALD1, and 
IBP2) were secreted at lower levels. 

Functional impairment of T2D MSCs is evident 
from preclinical and clinical studies that have been 
performed to determine their efficacy in the tre-
atment of peripheral arterial disease (PAD). PAD is 
frequently associated with diabetes, hypertension, 
atherosclerosis, and aging - all of which could da-
mage the regenerative function of stem cells and 
progenitor cells124-129. Yan et al130 have shown that 
experimental T2D causes hyperinsulinemia-indu-
ced oxidant stress in murine MSCs, a stress that 
restricts their multipotency and impairs their capa-
city to promote neovascularization. 

The same authors observed that MSCs harvested 
from T2D mice show several dysfunctions deriving 
from oxidative stress131. Rather than increasing post-
ischemic neovascularization and limb blood flow, 
injection of MSCs from T2D mice impaired blood 
flow recovery. Should human MSCs display similar 
oxidative stress-induced impairment of function, 
these findings recommend a therapeutic approach 
aimed maximizing the potential of MSC transplan-
tation, particularly in the increasingly common set-
ting of diabetes or other cardiovascular risk factors. 
The authors propose that either in vivo systemic tre-
atment with an antioxidant and/or ex vivo treatment 
of MSCs with antioxidants could significantly incre-
ase the intended clinical benefit131. 

A recent study by Rezabakhsh et al132 investiga-
ted the impact of T2D sera on the angiogenic diffe-
rentiation capacity of primary healthy BM-MSCs. 
The study showed that T2D serum decreased the 
angiogenic properties of MSCs via direct effect on 
angiogenesis pathways or via induction of auto-
phagy signaling132.

Taking all these considerations together, the pa-
thophysiology of T2D and the associated changes 
in the bone marrow microenvironment seem to 
affect multiple aspects of BM-MSCs biology and 
function. T2D seems to exacerbate the impairment 
of these stem cells to an extent greater than T1D. 
It is however still largely unknown whether distin-
ct mechanisms underlie BM-MSCs dysfunction in 
T1D compared to T2D36.

se cells may mediate the ill effects of hyperglyce-
mia, and may contribute to chronic diabetic com-
plications such as diabetic neuropathy.

Although the amount of proinsulin produced by 
the BM cells exposed to hyperglycemia in vivo was 
extremely small, the appearance of proinsulin-pro-
ducing cells outside the pancreas may represent the 
body’s attempt to reverse hyperglycemia108. Thus, 
chronic exposure to hyperglycemia may be impor-
tant for the decreased potential of these BM-MSCs, 
precluding them for autologous stem cell therapy in 
T2D patients. In fact, these cells appear to be ter-
minally differentiated, therefore leading to a loss of 
stemness and failure of further propagation108.

Furthermore, the persistent hyperglycemic mi-
lieu in T2D is also associated with several pathologi-
cal complications, mostly related with compromised 
vascularization and/or aberrant angiogenesis111. By 
releasing growth factors and cytokines such as IGF-
1, BM-MSCs stimulate endothelial cell migration112, 
inhibit endothelial apoptosis, stimulate angiogene-
sis, promote neovascularization and tissue regene-
ration112-114. The influence of T2D on the secretome 
and pro-angiogenic functions of BM-MSCs deser-
ves thorough investigations. Ribot et al111 analyzed 
the impact of T2D on BM-MSCs secretome and 
functions, hypothesizing that in the diabetic milieu 
these could have different composition and proper-
ties. The results obtained provided the evidence that 
short-term T2D alters the BM-MSC secretome com-
position and promotes angiogenic capabilities111. 

Angiogenesis-related genes are differentially 
expressed in BM-MSCs from diabetic fatty rats 
(ZDF, a T2D model) when compared with lean 
animals (control). In particular, several pro-an-
giogenic genes were found to be overexpressed, 
while anti-angiogenic genes were downregulated. 
The up-regulated genes included IGF-1 and TIE1, 
which are critical regulators of angiogenesis115, 
MCP-1 and IL-6, homing factors for BM-MSCs 
and endothelial cells/endothelial progenitor cells116, 

117, and IL-6 and TNFa, critical mediators of the in-
flammatory process. Moreover, proteomic analysis 
of the T2D BM-MSC secretome showed decreased 
levels of ab-crystallin, a chaperone for VEGF-A, 
and increased levels of LTBP1 and LTBP2, regula-
tors of TGF-b availability118, as well as of OSTP and 
FMOD, which are components of the extracellular 
matrix and might be involved in the paracrine ac-
tion of T2D BM-MSCs on endothelial cells119-122. In 
addition, the proteomic analysis of T2D BM-MSC 
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De Vyver et al36 argued that strategies focused on 
restoring stem/progenitor cells mobilization in autolo-
gous cell therapy are limited in that stem cell damage 
can occur at the bone marrow niche before mobiliza-
tion into the peripheral blood. This hypothesis was also 
confirmed by an observation by Januszyk et al133, who 
affirmed that the pathogenesis of both T1D and T2D 
may deplete specific subpopulations of BM-MSCs and 
this defect cannot be corrected by restoring glucose ho-
meostasis. In addition to affecting BM-MSCs viability 
and functional capacity, long term exposure to the pa-
thological bone marrow niche environment can induce 
a certain degree of disease memory in MSCs100. Future 
studies are required to provide a strict assessment of 
the efficacy of MSCs transplantation in T1D, T2D, and 
related complications. 
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