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Abstract
Genetically-engineered pigs offer a possible al-
ternative to deceased human donors as a source 
of isolated islets for transplantation into pa-
tients with life-threatening diabetes. We here 
consider the advantages and disadvantages of 
‘free’ pig islet transplantation into immunosup-
pressed recipients vs. ‘immunoisolated’ pig islet 
transplantation into non-immunosuppressed re-
cipients. Although hurdles to successful free pig 
islet transplantation remain, e.g., the instant 
blood-mediated reaction (IBMIR) and the im-
mune response, we are optimistic that, as new 
genetically-engineered pigs become available, 
the remaining barriers may be overcome. In 
contrast, we have several concerns with re-
gard to the ultimate success of immunoisolation. 
Without exogenous immunosuppressive thera-
py, we suggest that immune injury will occur. 
If immunosuppressive therapy is required, the 
primary advantage of encapsulation is lost. A 
key point is that the lack of adequate nutrition 
and oxygen to the encapsulated islets has not 
yet been overcome. Furthermore, an optimal 
site for the placement of the islets has also not 
been determined. We also very briefly review 
several other points of importance to islet xe-
notransplantation, namely (i) Human leukocyte 
antigens/Swine leucocyte antigens sensitization, 

(ii) physiological aspects of pig islet xenotrans-
plantation, (iii) the safety of islet xenotransplan-
tation, and (iv) what will be required to initiate 
a clinical trial.

Abbreviations
HLA = human leukocyte antigens, IBMIR = in-
stant blood-mediated inflammatory reaction, NHP 
= nonhuman primate, PERV = porcine endogenous 
retrovirus, SLA = swine leukocyte antigens, WT 
= wild-type.

Introduction

The incidence of diabetes is increasing worldwide. 
In the USA alone, there are an estimated 1-2 mil-
lion people with Type 1 diabetes and perhaps 30 
million with Type 2 diabetes. Islet allotransplan-
tation might be curative but, with less than 2,000 
pancreatic organs from deceased human donors 
becoming available each year, there will never be 
sufficient human islets to resolve this problem.

Genetically-engineered pigs offer a possible al-
ternative as a source of isolated islets for transplan-
tation into patients with life-threatening diabetes1. 
During the past several years, there have been very 
considerable advances in xenotransplantation re-
search, with non-human primates (NHPs) with het-
erotopic (non-life supporting) pig heart transplants 
surviving for more than 2 years, and life-support-
ing pig kidney transplants for more than a year 
(Figure 1)2-8. After pig islet transplantation, NHPs 
have remained normoglycemic for periods longer 
than two years. 

One of the major reasons why both islet allotrans-
plantation and islet xenotransplantation have not ex-
panded as quickly as might be thought possible has 
been because the patient requires lifelong immuno-

*Based on a presentation at the 3rd Cleveland Clinic Beta 
Cell Therapy Symposium on Diabetes, Cleveland, OH, USA, 
November 9-10, 2018.
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‘Free’ pig islet transplantation 
in diabetic non-human primates

The preparation of pig islets is technically more 
difficult than that of human islets, but the technique 
has now been refined over a number of years, and 
a large number of pig islets can be successfully ob-
tained from either adult or neonatal pigs (Figure 2). 
Although transplanted adult islets begin producing 
insulin immediately (whereas neonatal islets may 
not be mature enough to do so), there are sever-
al logistic and other advantages of using neonatal 
pigs as sources of islets that have been discussed 
elsewhere9,10. In order to prevent an inflammatory 
response, both free and encapsulated pig islets have 
been cotransplanted with regulatory cells, such as 
mesenchymal stromal cells or Sertoli cells, but 
without complete success. Most investigations to 
date have transplanted the islets into the recipient 
portal vein, using methods identical to those used 
in human islet allotransplantation. Their injection 
into the blood, however, is associated with a major 
complication known as the instant blood-mediated 
inflammatory reaction (IBMIR)11,12. This response 
also occurs after islet allotransplantation into the 
portal vein, but there are in vitro data indicating 
that the loss of islets is much greater when the is-
lets are from pigs (Figure 3)13,14. Perhaps as many 
as 75% of islets are lost within the first few hours, 
if not minutes. If the number of islets surviving is 

suppressive therapy, which is associated with signif-
icant complications, such as infection and malignant 
change. Because of this, many physicians believe 
that one debilitating illness, namely diabetes, is be-
ing exchanged for another, namely immunodeficien-
cy. In an effort to resolve this problem, experiments 
have been performed over a number of years in 
which attempts have been made to physically “iso-
late” the islets from the human immune response, 
e.g., by encapsulation, thus abrogating the need for 
exogenous immunosuppressive therapy.

We here consider the advantages and disadvan-
tages of each approach, i.e., ‘free’ pig islet trans-
plantation into immunosuppressed recipients vs. 
‘immunoisolated’ pig islet transplantation into 
non-immunosuppressed recipients. 

Figure 1. Survival after pig organ transplantation in nonhuman 
primates, 1986-2017. A, After life-supporting pig kidney 
xenotransplantation, maximum survival has improved from 23 
days in 1989 to >1 year. B, After heterotopic (non-life-supporting) 
pig heart xenotransplantation in nonhuman primates, maximum 
survival has improved from <8 hours in 1986 to 945 days. 
(Reproduced with permission from Wang et al8).

A

B

Figure 2. Adult pig islets after isolation. Adult pig islets 
stained in red with dithizone after isolation and purification 
(Magnification 40x).
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adaptive immune (T cell) response22-25, in all pig-
to-NHP studies to date, exogenous immunosup-
pressive therapy has been administered, usually in 
the form of agents that block costimulation, e.g., 
anti-CD154 monoclonal antibodies or anti-CD40 
monoclonal antibodies26,27. The combination of ge-
netically-engineered pig islets and costimulation 
blockade has resulted in significant success with 
pig islet xenotransplantation, resulting in normo-
glycemia for periods of more than a year in strepto-
zotocin-induced diabetic NHPs (Figure 4)18,19.

When a potent costimulation blockade agent is 
administered, even islets from wild-type (i.e., ge-
netically-unmodified) pigs have functioned ade-
quately for periods in excess of two years [Figure 
5]28,29. There is significant evidence that, the greater 
the extent of genetic manipulation, the less immu-
nosuppressive therapy will be required. Never-
theless, unless very intensive immunosuppressive 
therapy is delivered, these excellent results cannot 
be obtained consistently. 

Pigs are now available in which all three known 
carbohydrate xenoantigens have been deleted (TKO 
pigs), and in which six human transgenes have 
been introduced to provide protection against hu-
man complement and coagulation activation, and 
against the human inflammatory response (by the 
introduction of human hemeoxygenase-1 [HO-1])21. 
In addition, the expression of CD47 is known to 
reduce macrophage activation and may have some 
suppressive effect on the T cell response. Although 

sufficient, then long-term normoglycemia can be 
obtained in NHPs receiving immunosuppressive 
therapy, particularly if that is with agents that block 
the CD154-CD40 T cell costimulation pathway.

Many efforts have been made to avoid or reduce 
IBMIR. One approach has been to genetically en-
gineer the pigs so that the islets are to some extent 
protected against the inflammatory response that oc-
curs immediately when they are introduced into the 
blood. Genetic engineering of the pigs has involved 
two major approaches15-17. (i) Deletion of expression 
of one or more of the three known carbohydrate an-
tigens expressed in pigs against which humans have 
natural, pre-formed anti-pig antibodies. These three 
antigens are galactose-α1,3-galactose (Gal), N-gly-
colylneuraminic acid (Neu5Gc), and Sda (a product 
of the enzyme, β-1,4N-acetylgalactosaminyltrans-
ferase [β4GalNT2]). (ii) Transgenic expression of 
one or more human complement-regulatory pro-
teins (e.g., CD46, CD55, CD59) and human coag-
ulation-regulatory proteins (e.g., thrombomodulin, 
endothelial protein C receptor [EPCR], tissue factor 
pathway inhibitor [TFPI], CD39). Combinations of 
these genetic manipulations in the pig are associated 
with reduced early graft loss from IBMIR, although 
there remains a significant loss18-20. This may be re-
duced further when triple knock-out (TKO) pigs ex-
pressing human complement- and coagulation-regu-
latory proteins become readily available21.

Although methods have been developed to ge-
netically-engineer the pig to reduce or control the 

Figure 3. Binding of human IgM 
and IgG antibody to pig islets 
(xenogeneic) (A-B) and to human 
islets (allogeneic) (C-D). IgM 
(green, A, C), IgG (green, B, D), 
insulin (red), nucleus (DAPI/blue). 
Yellow indicates colocalization of 
insulin and IgM/IgG. The greatly 
increased binding of human IgM and 
IgG to pig islets (compared to human 
islets) is obvious. (Reproduced with 
permission from van der Windt et al13).
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site for the islets can be identified in which IBMIR 
is no longer problematic, then the number of islets 
that would require transplantation could be signifi-
cantly reduced. In our own experience, the gastric 
submucosal space is one such site that warrants 
further exploration (Figure 6)31-33. 

The fact that islets can be transplanted success-
fully under the kidney capsule in rodents and in 
pigs asks the question as to why this site has not 
been explored further in primates, including hu-
mans. There is evidence that if autologous islets 
are placed under the kidney capsule of a pig, and 
even baboon, then, in the absence of any immune 
or inflammatory response, they are revascularized 
rapidly, enabling the composite islet kidney graft 
to be transplanted into a recipient successfully34,35. 

Immunoisolation of pig islets

The concept of protecting the islets by isolating 
them within a device or through encapsulation is 
not new, and efforts to develop these devices or 
capsules have been undertaken for more than 50 
years, but have not yet been proven entirely suc-
cessful. The islets can be placed within an intravas-
cular device or in the form of macroencapsulation 
or microencapsulation10,36-39. Microencapsulation 
is perhaps the approach that has been investigated 
most intensively. Whatever the approach, there are 
significant considerations37. 
1) The encapsulation material must be fully bio-

compatible so that it does not induce an inflam-
matory response itself.

2) Protection of the islets from the recipient’s im-
mune cells, antibodies, and cytokines/chemok-
ines need to be complete, and yet the capsules 
must allow insulin to be released from the islets 
into the surrounding tissues. This has proved 
a major biomechanical engineering problem. 
If the islets undergo loss of viability, then an-
tigen can leak through the pores in the capsule, 
and thus sensitize the recipient to pig antigens. 
Theoretically, if the immunoisolation technique 
were fully successful, there would be no need to 
provide exogenous immunosuppressive therapy. 
As to date this has not proved to be the case, 
thought has been given to providing a low level 
of immunosuppressive therapy to patients with 
encapsulated islets. However, if immunosup-
pression is necessary, then the advantages of 
immunoisolation over free islet transplantation 
are greatly minimized. Consideration has also 

not yet tested in NHP models, when these pigs are 
used as sources of islets, it is likely that both IB-
MIR and the T cell response will be reduced. How-
ever, alternative approaches are being explored. 

It is becoming increasingly clear that introduc-
ing the pig islets into the blood (e.g., the portal vein) 
is less than optimal, and so several other sites have 
been explored30. If a novel yet clinically feasible 

Figure 4. A, Blood glucose and pig C-peptide levels in a 
streptozotocin-induced diabetic cynomolgus monkey before 
and after intraportal transplantation of islets from a pig 
expressing the human complement-regulatory protein, CD46. 
No exogenous insulin was administered after the transplant. 
The normoglycemic monkey was electively euthanized after 
12 months. Day 0 = day of islet transplantation. B, Insulin 
immunostaining (in red) of a liver section in a monkey 
recipient of islets from a pig transgenic for human CD46, 
showing a healthy pig islet 12 months after transplantation. 
(Magnification x200). (Reproduced with permission from 
van der Windt et al18).
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always an altered insulin response from encap-
sulated islets than from free islets, thus reducing 
their efficiency in maintaining normoglycemia. 
Thoughts have been given to revascularize the 
islets within the capsules, but if this is achieved, 
it negates the benefit of the immunoisolation as 
it enables immune cells, antibodies, comple-
ment, etc., to reach the islets and damage them.
There have been a number of small clinical trials 

of immunoisolated islets using encapsulated intra-
peritoneal adult wild-type pig islets with no immu-
nosuppressive therapy40-42. Two of the more import-
ant and well-regulated trials have been carried out 

been given to employ islets from genetical-
ly-engineered pigs within the capsules to pro-
tect against the immune response (which again 
should not be needed if the capsules completely 
protected the islets from the immune response).

3) Perhaps the major problem has been providing 
sufficient nutrition and oxygen to the islets with-
in the capsules. The provision of nutrition and 
oxygenation is complicated by a number of re-
lated factors, including the rate of diffusion, the 
distance that has to be traveled by the nutrients 
and oxygen to reach the islets, and the size of the 
capsules. Even if these are optimized, there is 

Figure 5. Blood glucose, porcine 
and monkey C-peptide levels, and 
exogenous insulin requirements in 
a monkey following adult wild-type 
pig islet transplantation (with graft 
function for >2 years). (Courtesy Dr. 
Chung-Gyu Park, Seoul National 
University.)

Figure 6. Sequence of adult pig 
islets being injected into the gastric 
submucosal space by endoscopy. 
(Reproduced with permission from 
Echeverri et al31).
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a pig graft44-49. When there is cross-reactivity be-
tween HLA and swine leukocyte antigens (SLA), 
it should be possible in the not-too-distant future to 
overcome this barrier by genetic engineering, e.g., 
(i) by deletion of expression of SLA class I25 and/or 
downregulation of SLA class II24, or (ii) by deleting 
a specific SLA amino acid and replacing it with a 
‘non-offending’ SLA amino acid50. 

Sensitization to a pig graft (i.e., to SLA) does not 
appear to result in sensitization to a human graft47. 
Therefore, failure of pig islet transplantation would 
not necessarily preclude the patient from receiving 
a subsequent human islet allograft.

Physiological aspects of pig islet 
xenotransplantation

There are significant differences in glucose metab-
olism between human, NHP, and pig islets51-53. For 
example, the normal C-peptide level in monkeys 
is 0.47-3.14 nmol/l, whereas in humans, it is only 
0.17-0.66, and in pigs it is 0.11-0.32. Therefore, the 
transplantation of pig islets (that normally maintain 
only a low C-peptide level) into a monkey (where a 
much higher C-peptide level is required) is a major 
hurdle. The difference in response to a glucose tol-
erance test is considerable between monkey islets 
and pig islets. It is perhaps surprising that any pig 
islet transplants in NHPs have proved so success-
ful, and we speculate that pig islets may function 
more efficiently in humans.

There are, however, genetic-engineering tech-
niques that might help improve pig islet produc-
tion of insulin. Gianello and his colleagues have 
carried out some innovative studies in which they 
have increased insulin production in pigs by intro-
ducing genes for glucagon-like peptide-1 (GLP-1) 
and Type 3 muscarinic receptor (M3R), resulting 
in the pig islets producing higher levels of insulin54. 
However, with this approach there is a possibility 
that exhaustion of the pig islets might be caused, 
resulting in early graft failure independent of any 
immune response.

Safety of islet xenotransplantation

Concern regarding potential transfer of infectious 
microorganisms from the pig islets to the recipient 
and, even more, to the personal contacts of the recip-
ient, e.g. family, friends, medical and nursing staff, 
and members of the public, has been raised. Never-
theless, pigs bred and housed under the conditions 
that will be required by the regulatory authorities 

in New Zealand and Argentina under national or 
local regulatory authority supervision. Although 
neither trial has been fully reported, it is believed 
that graft survival was not perfect, although there 
may have been some reduction in hemoglobin A1c 
levels. Nevertheless, there were no significant in-
fectious or other complications from these trials, 
indicating that the concept is a safe one.

A recent study throws considerable light onto the 
factors limiting the success of microencapsulation. 
Saffley et al43 carried out the transplantation of mi-
croencapsulated adult islets into the peritoneal cav-
ity of diabetic NHPs that received immunosuppres-
sive therapy in the form of costimulation blockade. 
Glycemia was controlled for 20-70 days (with pig 
C-peptide being measured for between 7-125 days). 
There was no clinical or histopathological evidence 
of rejection. These data strongly suggested that fail-
ure of the grafts was not immune-related, but was as-
sociated with a lack of nutrition and/or oxygenation 
of the islets during the first two to three months’ 
post-transplantation. If immunosuppressive therapy 
had not been administered, however, it would have 
been interesting to see whether the islets failed at an 
earlier time-point from immune injury.

The case for ‘free’ pig islet 
xenotransplantation

In summary, therefore, there are several current 
concerns with regard to immunoisolation. Without 
exogenous immunosuppressive therapy, we suggest 
that immune injury will occur. If immunosuppres-
sive therapy is required, there is no advantage over 
free islet transplantation. A key point is that the lack 
of adequate nutrition and oxygen to the islets has not 
yet been overcome. Furthermore, an optimal site for 
the placement of the capsules containing islets has 
also not been determined. Most encapsulated islets 
have been implanted into the peritoneal cavity, but 
whether this is an ideal site is uncertain. Within the 
peritoneal cavity, the islets tend to cluster together 
caudally (i.e., on the floor of the cavity) and may not 
be well-distributed, perhaps increasing the likeli-
hood that nutrients and oxygen fail to reach them.

Other considerations

Sensitization

The current evidence is that sensitization to a 
human graft (i.e., to human leukocyte antigens 
[HLA]) may or may not result in sensitization to 
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ulant heparin. Worldwide, approximately 250,000 
pig heart valves are implanted to replace defective 
heart valves in human patients. Therefore, using 
pig islets as an approach to therapy in patients with 
life-threatening diabetes will not be very different 
from use of pigs for other purposes.

Conclusions
In the light of the present evidence available to us, 
we would suggest that (i) free islets have more po-
tential than immunoisolated islets; (ii) the portal 
vein is not ideal for the transplantation of free is-
lets; (iii) the islets will need to be genetically-en-
gineered to protect against IBMIR, inflammation, 
and antibody-mediated and cellular rejection; and, 
ideally, (iv) minimal or no exogenous immunosup-
pressive therapy should be required (and may well 
be achieved by further genetic manipulation of 
the source pigs)15,21. We are optimistic that, as new 
pigs become available, protection may be provided 
against both IBMIR and the immune response.
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