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AbstrAct
This review examines the current status of vari-
ous cellular and non-cellular regeneration tech-
nologies used for the repair and regeneration of 
damaged connective tissue. The article explores 
the clinical use of bone marrow-derived mesen-
chymal stem cells, adipose tissue-derived mes-
enchymal stem cells, growth factors, cytokines, 
platelet-rich plasma and GOLDIC® method. To 
compare the regenerative capacity of these tech-
nologies, a systematic analysis of the regenera-
tion quality is necessary, and a high-resolution 
magnetic resonance imaging (MRI) using a 
quality scoring system is needed. It is likely that 
in future clinical practice a combination of such 
technologies will offer the optimal treatment to 
patients with different connective tissue disor-
ders, which must always be our ultimate goal.   

IntroductIon

Connective tissues such as ligaments, tendons, in-
tervertebral discs, and articular cartilage have a 
limited capacity to heal following structural dam-
age1. Nevertheless, bone can heal when injured 
thanks to the high degree of vascularization and 
the appropriate cellular environment to promote 
tissue repair2. It is known that urodele amphibians 

such as the newt can regenerate their tails, limbs, 
lens, retina, jaw, and even a large portion of the 
heart3,4, but the capacity for regeneration of whole 
tissues and organs has been lost in mammals5. The 
inadequacy of true connective tissue regeneration 
in mammals has been attributed to the absence of 
blastema formation (a reverse developmental pro-
cess occurring partly via cell de-differentiation in 
tissues local to the amputation plane and partly via 
a contribution of muscle stem cells) and to the rapid 
fibroproliferative response after wounding6.

The physiological healing process of the con-
nective tissue can be broadly separated into the 
processes of regeneration and repair7. Regeneration 
results in the complete restitution of lost or dam-
aged tissue, whereas repair may restore some orig-
inal structures but involves collagen deposition and 
scar formation8. Chronic inflammation stimulates 
scar formation through local production of growth 
factors and cytokines that promote fibroblast pro-
liferation and collagen synthesis9.

Tissue repair and regeneration depend not only 
on the activity of humoral factors, but also on inter-
actions between cells and the components of the ex-
tracellular matrix (ECM)10. The ECM regulates the 
growth11, proliferation12, migration13, and differenti-
ation14 of the cells residing within it. It is proposed 
that the ECM constantly undergoes remodelling in 
both physiological and pathological processes. The 
synthesis and degradation of ECM is associated with 
morphogenesis15, wound healing16, chronic fibrosis17, 
regeneration18, and metastatic processes19. The ECM 
components can regulate cell proliferation by signal-
ing through cellular receptors belonging to the inte-
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time of writing, MSCs have been isolated from bone 
marrow36, periosteum37, trabecular bone38, adipose 
tissue39, synovium40, skeletal muscle41, deciduous 
and adult teeth42, umbilical cord blood43, umbilical 
cord tissue44-46, placenta47, and several other sources 
such as menstrual blood48 and milk49, which are in 
the early stages of research and development.

BM-MSCs can differentiate into cells belonging 
to the connective tissue lineage, including bone50, 
fat51, cartilage52, intervertebral disc cells53, liga-
ments54, and cardiomyocytes55. BM-MSCs generate 
rapidly dividing cells known as transit-amplifying 
cells (TACs) which lose their capacity of self-renew-
al and give rise to cells with restricted developmen-
tal potential known as progenitor cells56. BM-MSCs 
can be isolated and expanded in vitro ideally using 
an automated bioreactor to optimize the quality and 
safety of the expanded cell product57. 

BM-MSCs clearly have a great potential in the 
treatment of damaged connective tissue, particu-
larly in osteoarthritis58. However, there are some 
problems that still need to be resolved. These prob-
lems include clinical challanges59 and a careful 
consideration of regulatory issues arising from the 
use of expanded human stem cells for clinical ap-
plications60 (Table 1).

AdIpose-derIved mesenchymAl 
stem cells (Ad-mscs)

In general, adipose-derived mesenchymal stem 
cells (AD-MSCs) are characterized by a reduced 
expression of bone morphogenetic protein (BMP)-
2, BMP-4 and BMP-6, and by the lack of expres-
sion of transforming growth factor (TGF)-β type 
1 receptor when compared to BM-MSCs61. There-
fore, supplementation of these factors is needed if 
osteogenic or chondrogenic differentiation is de-
sired from AD-MSCs. Currently, adipose-derived 
cells and tissues can be prepared with increasing 
regenerative therapeutic potency through different 
strategies, including:
1. Fat grafting, which is usually associated with 

cosmetic and plastic/reconstructive surgery ap-
plications62.

2. Micronized or emulsified fat, which is common-
ly used in plastic and reconstructive surgery63.

3. Mechanically and enzymatically processed 
stromal vascular fraction (SVF), which contains 
free AD-MSCs64.

grin family20. The type of ECM proteins can affect 
the degree of cell differentiation21, and the mainte-
nance of normal tissue structure requires a base-
ment membrane or stromal scaffold22. The integrity 
of basement membrane and parenchymal cells is 
critical for the organized regeneration of tissues23. It 
is worth noting that tissue injury results in restitu-
tion of the normal structure only if the ECM is not 
damaged, although labile and stable cells are capable 
of regeneration. Disruption of the ECM ultimately 
leads to collagen deposition and scar formation24.

The regenerative capacity of any tissue de-
pends on fibroblast growth factors25 and cell sig-
naling mechanisms26. Therefore, it is not surpris-
ing that regenerative therapeutic approaches are 
focused on the use of cells (including stem cells) 
and growth factors. Of note, the use of growth fac-
tors, platelet-rich plasma (PRP), autologous differ-
entiated cells and mesenchymal stem cells (MSCs) 

has shown the most promise for the treatment of 
musculoskeletal diseases27-30. The efficacy of these 
treatments is based on their potential to regenerate 
tissues which cannot be regenerated under physio-
logical conditions. However, the proof of concept 
of the efficacy of such new therapies has not been 
fully achieved yet31. Indeed, true tissue regener-
ation has to be proven by histology or high-reso-
lution magnetic resonance imaging (MRI). Some 
technologies have demonstrated promise, but none 
of them has proven to induce true connective tissue 
regeneration, which consists of complete restitution 
of damaged tissue on a histological level)32.

bone mArrow-derIved mesenchymAl 
stem cells (bm-mscs)

Stem cells are characterized by self-renewal prop-
erties and by their capacity to differentiate into dif-
ferent cell lineages33. MSCs are multipotent cells, 
which means that they have potentially important 
therapeutic applications since they can generate 
chondrocytes, osteoblasts, adipocytes, myoblasts, 
and endothelial cell precursors depending on the 
tissue to which they migrate34. MSCs migrate to in-
jured tissues and generate stromal cells or other cell 
lineages, but they do not seem to participate in nor-
mal tissue homeostasis. More recently, some authors 
have proposed that MSCs play an important role 
in normal tissue homeostasis35, which may reflect 
the true role of MSCs in tissue homeostasis. At the 
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which are therefore more strictly regulated. In 
general, AD-MSCs exhibit immunomodulatory67 
and trophic properties68, and originate from local 
pericytes liberated from the broken blood vessels 
during processing. In situ activated AD-MSCs se-
crete a range of bioactive agents that locally inhib-
it the overactive immune system, resulting in an 
important line of defence against the development 
of autoimmune responses due to the antigen expo-
sure following tissue injury. On the other hand, the 
trophic effects of AD-MSCs help to establish an 
optimal regenerative microenvironment at the site 
of injury by: i) inhibiting ischemia-related apop-
tosis69, ii) downregulating scar formation70, iii) 
stimulating angiogenesis via secretion of vascular 
endothelial growth factor (VEGF)71, iv) promoting 
capillary stabilization through AD-MSC-derived 
pericytes72, v) secreting tissue progenitor-specific 
mitogens that enhance tissue regeneration73.

AD-MSCs are considerably promising for the 
regeneration of damaged connective tissue. How-
ever, as with BM-MSCs, there are technical, reg-
ulatory and translational issues that need to be 

4. Mechanically digested SVF mixed with the 
ECM concentrate, which is also referred to as 
“stromal vascular matrix” (SVM) and combines 
both free AD-MSCs and associated ECM65.

5. In vitro expanded AD-MSCs containing much 
higher numbers of AD-MSCs66.
Fat graft has minimal to no potency as the 

MSCs are not liberated from their perivascular 
niche and are difficult to activate. Micronized or 
emulsified fat has improved biochemical activity 
as stem cells are found in smaller micro-niches. 
Mechanical washing and removal of fibrous tissue 
enable cells to survive longer in their implanted 
microenvironment. SVF and SVM require me-
chanical or enzymatic digestion of whole adipose 
tissue and separation from other cell types by cen-
trifugation. In most countries, enzymatic adipose 
tissue processing results in an “advanced therapy 
medicinal products” (ATMP), whereas mechanical 
processing does not result in an ATMP making it 
relatively easier to use. The use of expanded AD-
MSCs is considered a higher regulatory risk be-
cause of the increased manipulation of these cells, 

Table 1. Description of the different regenerative techniques for connective tissue repair and regeneration based on their 
regenerative capacity, regulation, side effects, risks, costs, and availability.

 BM-MSCs AD-MSCs Adipose  Adipose  Cytokines  PRP GOLDIC®

   SVF Tissue and growth 
     factors 

Regenerative  + + + + +/- +/- ++
 capacity
Regulatory  ATMP ATMP ATMP Medical Pharmaceutical Medical Medical
 requirements     Product  Product Product
Collection  Bone marrow Adipose tissue  Adipose tissue  Adipose tissue  None Venepuncture Venepuncture 
 procedure aspiration harvesting harvesting harvesting
Preparation In vitro culture  In vitro culture Single step Single step Ready to use Centrifugation In vitro culture
 and differentiation and differentiation aspiration and aspiration and  of whole blood of whole blood
 of cells with  of cells with preparation preparation,   with defined gold
 various protocols various protocols (mechanical or  washing or   particles for
   enzymatic  emulsification   24 hours
   processing) without enzymes   
Risks Moderate Moderate Moderate Minimal Minimal None None
Costs High High Moderate Moderate Moderate Low Low
Availability Veterinary  Veterinary Worldwide Worldwide Worldwide Worldwide Veterinary
 market; market; (although regulatory     market worldwide;
   constraints exist)    human market 
 few in human  few in human     in Europe
 market market

Abbreviations: AD-MSCs: adipose-derived mesenchymal stem cells; ATMP: advanced therapy medicinal products; BM-
MSCs: bone marrow-derived mesenchymal stem cells; GOLDIC®: gold-induced cytokines; PRP: platelet-rich plasma; SVF: 
stromal vascular fraction.
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and to have a role in inflammation92. VEGF-C and 
VEGF-D bind to VEGFR-3 and act on lymphatic 
endothelial cells to induce lymphangiogenesis93. 
The pivotal role of VEGF in vasculogenesis, an-
giogenesis and lymphangiogenesis indicates that 
VEGF is an important component of the regener-
ative mechanisms for damaged connective tissue.

Fibroblast growth Factor (FgF)
Fibroblast growth factor (FGF) exists in more 
than 20 isoforms94. Acidic FGF (aFGF, or FGF-
1)95 and basic FGF (bFGF, or FGF-2)96 are the best 
characterized FGF isoforms in terms of structure 
and function. Most FGF molecules transduce sig-
nals via four tyrosine kinase receptors: fibroblast 
growth factor receptor (FGFR)-1, FGFR-2, FGFR-3 
and FGFR-497,98. FGF-1 is capable of binding to all 
these receptors98. FGF-7 is also known as keratino-
cyte growth factor (KGF)99. FGF signaling contrib-
utes to wound healing100, angiogenesis101, hemato-
poiesis102, skeletal development103, and many other 
biological processes. The wide range of biologi-
cal activities exerted by FGFs suggests that these 
growth factors play an important role in the regen-
eration and repair of damaged connective tissue.

transForming growth Factor-b (tgF-b) 
And relAted growth fActors
There are approximately 30 different types of 
transforming growth factors (TGFs) which include 
three TGF-b isoforms, namely: TGF-b1, TGF-b2 
and TGF-b3104,105. TGF-b is a homodimeric pro-
tein produced by many different cell types such 
as platelets106, lymphocytes107, macrophages108, and 
endothelial cells109. TGF-b has multiple and often 
opposing effects depending on the tissue and the 
type of injury110; for instance, TGF-b has growth 
inhibition properties in most epithelial cells111. In 
this regard, loss of TGF-b receptors may occur 
during tumorigenesis, providing a proliferative ad-
vantage to cancer cells112. Overall, TGF-b seems to 
participate in most cellular processes and is there-
fore an excellent candidate molecule potentially in-
volved in the repair of damaged connective tissue.

cytokInes

Cytokines have important functions as mediators 
of inflammation and immune responses113. Cyto-
kines contribute to the homeostasis of bone and 

resolved before AD-MSCs can be brought into rou-
tine clinical use. Limitations and regulatory issues 
of AD-MSCs are shown in Table 1.

role of growth fActors In the regenerAtIon 
of dAmAged connectIve tIssue

Growth factors have many roles in normal cellular 
homeostasis, including promotion of cell survival74, 
induction of cell proliferation75, and stimulation of 
cell contractility76, cell locomotion77, cell differen-
tiation78, and angiogenesis79. Growth factors act as 
ligands by binding to specific cell surface receptors, 
which in turn deliver signals to the target cells. These 
signalling pathways stimulate gene transcription80 
that may be silent in resting cells and may involve 
genes that control the entry into the cell cycle81. 

Platelet-derived growth Factor (PdgF) 
Platelet-derived growth factor (PDGF) constitutes a 
family of several closely related polypeptides, con-
sisting of chains linked by disulphide bridges and 

resulting in five dimeric isoforms82. PDGF is stored 
in platelet granules and is released upon platelet ac-
tivation83. PDGF is also produced by a variety of 
cells other than platelets, and it has been shown to 
play an important role in bone regeneration84. 

vascular endothelial growth Factor (vegF)
Vascular endothelial growth factor (VEGF) induc-
es blood vessel formation in early development 
through a process known as vasculogenesis85, and 
it has a central role in the growth of new blood ves-
sels (angiogenesis) in adults86. Specifically, vascu-
logenesis is defined as the differentiation of precur-
sor cells (angioblasts) into endothelial cells and the 
de novo formation of a primitive vascular network, 
whereas angiogenesis is defined as the growth of 
new capillaries from pre-existing blood vessels87.

VEGF promotes angiogenesis in chronic in-
flammation88, wound healing89, and tumorigene-
sis90. VEGF acts via three tyrosine kinase recep-
tors (Vascular endothelial growth factor receptors, 
a.k.a. VEGFRs): VEGFR-1, VEGFR-2 and VEG-
FR-3. VEGFR-2 is expressed in endothelial cells 
and many other cell types. These are the main re-
ceptors associated with the vasculogenic and an-
giogenic effects of VEGF91. The role of VEGFR-1 
is less well understood, although it is thought to 
facilitate the mobilization of endothelial stem cells 
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is an in vitro gold treatment of autologous whole 
blood. The resultant gold-treated plasma is read-
ministered to the patient without the presence of 
any residual gold compounds. Gold compounds 
have been used historically in the treatment of 
different inflammatory disorders, especially in 
musculoskeletal and rheumatic diseases, although 
these compounds are associated with many side 
effects127-129. In vitro studies have shown that incu-
bation with gold particles inhibits catabolic factors, 
increases anti-catabolic and anabolic factors, and 
increases the level of gelsolin (GSN), which is a 
protein exerting an important role in cellular me-
tabolism130. The mechanism of action of GOLDIC® 
procedure has yet to be fully defined, but in vitro 
studies have shown a significant increase in plasma 
GSN levels in the autologous serum, as well as in-
creased GSN levels in synovial fluid after intra-ar-
ticular GOLDIC® injection therapy131. GSN is a 
cytoplasmic regulator of actin organization, which 
is responsible for the viscoelasticity of the cell cy-
toskeleton and regulates important cell functions 
including cell motility, phagocytosis, apoptosis130. 
Plasma gelsolin (pGSN) can modulate pro-inflam-
matory pathways in rheumatoid arthritis, but local 
GSN levels in the affected joints are reduced even 
more than in plasma132. This considerably reduc-
es the efficacy of endogenous GSN in rheumatoid 
arthritis and increases the importance of exoge-
nous GSN (e.g., via GOLDIC® method) to treat 
inflammatory rheumatic diseases. It is clear that 
pGSN has a fundamental role in the modulation of 
pro-inflammatory responses, and, consistent with 
these functions, decreased pGSN levels have been 
detected in clinical conditions such as acute respi-
ratory distress syndrome, sepsis, major trauma, 
prolonged neonatal hyperoxia, malaria, and liver 
injury133,134. Moreover, the potential clinical utility 
of pGSN as a diagnostic tool has emerged in the 
aforementioned diseases, where circulating pGSN 
concentrations are below the normal values134. 

The first trial investigating the use of GOL-
DIC® method to treat lameness in horses showed 
a significant improvement in lameness-associated 
equine diseases following treatment135. The first 
human clinical study using GOLDIC® method in-
vestigated the use of this technology in Achilles 
tendinopathy and found significant clinical and ra-
diological (MRI) improvements136. In another clin-
ical study conducted in patients with osteoarthritis 
of the knee, intra-articular GOLDIC® injections 

connective tissue114 and play an important role in 
the regeneration of bone and connective tissue115. It 
is highly likely that cytokines play a critical role in 
the regeneration of damaged connective tissue and 
it is therefore important to consider their use in par-
allel with both cell- and non-cell-based therapies116. 
The potential clinical applications and limitations 
of the use of growth factors and cytokines for the 
regeneration of connective tissue are shown in Ta-
ble 1.

plAtelet-rIch plAsmA (prp)

Platelets are small non-nucleated cells found in the 
peripheral blood that are involved in hemostasis117. 
Platelets are important in wound healing regula-
tion through the release of a number of different 
cytokines, proteins and other biologically active 
molecules118. Platelet-rich plasma (PRP) is a blood 
product defined as a portion of the plasma fraction 
of autologous blood with an increased platelet con-
centration and an associated increase in growth 
factor concentration. PRP is obtained from autol-
ogous blood and prepared by simple centrifuga-
tion119. PRP has been shown to have a role in skin 
repair and healing120 and it is becoming increasingly 
used in many regenerative medicine protocols121,122.

The platelet alpha granules contain many growth 
factors including TGF- β, PDGF, insulin-like 
growth factors (IGF-1 and IGF-2), FGF, VEGF and 
epidermal growth factor (EGF)123. The aforemen-
tioned growth factors have important regulatory 
effects on tissue homeostasis and MSC function 
which, as described earlier, have an important role 
in regenerative medicine and may even be an im-
munomodulatory route to treatment of coronavirus 
disease 2019 (COVID-19)124. The immunomodula-
tory and anti-inflammatory properties of PRP are 
becoming increasingly important for the use of 
PRP in the treatment of musculoskeletal conditions 
and connective tissue diseases125-126.

the use of gold-Induced cytokInes (goldIc®) 

In the repAIr of dAmAged connectIve tIssue

The development of GOLDIC® technology has en-
abled the production of autologous conditioned se-
rum which is rich in anti-inflammatory cytokines 
(autologous gold-induced cytokines). GOLDIC® 



6 U. Schneider, W.D. Murrell, P. Hollands

dure for the assessment of repair and regeneration 
of damaged connective tissue. According to these 
criteria, GOLDIC® method may have the highest 
regenerative capacity and the lowest risk of side 
effects among all the regenerative procedures de-
scribed in this review. In conclusion, it is likely that 
in future clinical practice a combination of tech-
nologies aimed to promote connective tissue repair 
and regeneration will offer the optimal treatment to 
patients suffering from various inflammatory dis-
eases, which must always be our ultimate goal.
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